Search results for: data acquisition
23303 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 14923302 Geospatial Network Analysis Using Particle Swarm Optimization
Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh
Abstract:
The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.Keywords: particle swarm optimization, GIS, traffic data, outliers
Procedia PDF Downloads 48323301 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework
Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi
Abstract:
There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.Keywords: video lectures, big video data, video retrieval, hadoop
Procedia PDF Downloads 53323300 A Critical Analysis of Environmental Investment in India
Authors: K. Y. Chen, H. Chua, C. W. Kan
Abstract:
Environmental investment is an important issue in many countries. In this study, we will first review the environmental issues related to India and their effect on the economical development. Secondly, economic data would be collected from government yearly statistics. The statistics would also include the environmental investment information of India. Finally, we would co-relate the data in order to find out the relationship between environmental investment and sustainable development in India. Therefore, in the paper, we aim to analyse the effect of an environmental investment on the sustainable development in India. Based on the economic data collected, India is in development status with fast population and GDP growth speed. India is facing the environment problems due to its high-speed development. However, the environment investment could give a positive impact on the sustainable development in India. The environmental investment is keeping in the same growth rate with GDP. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: India, environmental investment, sustainable development, analysis
Procedia PDF Downloads 31523299 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis
Authors: R. Periyasamy, Deepak Joshi, Sneh Anand
Abstract:
Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis
Procedia PDF Downloads 49923298 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University
Authors: Bahloul Amel
Abstract:
The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.Keywords: EFL, posters, PowerPoint presentations, Animated Videos, visual learning
Procedia PDF Downloads 44523297 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis
Authors: S. K. Ashiquer Rahman
Abstract:
the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model
Procedia PDF Downloads 8123296 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things
Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala
Abstract:
In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.Keywords: embedded computing, internet of things, mobile computing, wireless technologies
Procedia PDF Downloads 31623295 Identifying the Goals of a Multicultural Curriculum for the Primary Education Course
Authors: Fatemeh Havas Beigi
Abstract:
The purpose of this study is to identify the objectives of a multicultural curriculum for the primary education period from the perspective of ethnic teachers and education experts and cultural professionals. The research paradigm is interpretive, the research approach is qualitative, the research strategy is content analysis, the sampling method is purposeful and it is a snowball, and the sample of informants in the research for Iranian ethnic teachers and experts until the theoretical saturation was estimated to be 67 people. The data collection tools used were based on semi-structured interviews and individual interviews and focal interviews were used to collect information. The data format was also in audio format and the first period coding and the second coding were used to analyze the data. Based on data analysis 11 Objective: Paying attention to ethnic equality, expanding educational opportunities and justice, peaceful coexistence, anti-ethnic and racial discrimination education, paying attention to human value and dignity, accepting religious diversity, getting to know ethnicities and cultures, promoting teaching-learning, fostering self-confidence, building national unity, and developing cultural commonalities for a multicultural curriculum were identified.Keywords: objective, multicultural curriculum, connect, elementary education period
Procedia PDF Downloads 9423294 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network
Authors: Liu Zhiyuan, Sun Zongdi
Abstract:
In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City
Procedia PDF Downloads 35223293 An Investigation of the Relationship Between Privacy Crisis, Public Discourse on Privacy, and Key Performance Indicators at Facebook (2004–2021)
Authors: Prajwal Eachempati, Laurent Muzellec, Ashish Kumar Jha
Abstract:
We use Facebook as a case study to investigate the complex relationship between the firm’s public discourse (and actions) surrounding data privacy and the performance of a business model based on monetizing user’s data. We do so by looking at the evolution of public discourse over time (2004–2021) and relate topics to revenue and stock market evolution Drawing from archival sources like Zuckerberg We use LDA topic modelling algorithm to reveal 19 topics regrouped in 6 major themes. We first show how, by using persuasive and convincing language that promises better protection of consumer data usage, but also emphasizes greater user control over their own data, the privacy issue is being reframed as one of greater user control and responsibility. Second, we aim to understand and put a value on the extent to which privacy disclosures have a potential impact on the financial performance of social media firms. There we found significant relationship between the topics pertaining to privacy and social media/technology, sentiment score and stock market prices. Revenue is found to be impacted by topics pertaining to politics and new product and service innovations while number of active users is not impacted by the topics unless moderated by external control variables like Return on Assets and Brand Equity.Keywords: public discourses, data protection, social media, privacy, topic modeling, business models, financial performance
Procedia PDF Downloads 9223292 Invention of Novel Technique of Process Scale Up by Using Solid Dosage Form
Authors: Shashank Tiwari, S. P. Mahapatra
Abstract:
The aim of this technique is to reduce the steps of process scales up, save time & cost of the industries. This technique will minimise the steps of process scale up. The new steps are, Novel Lab Scale, Novel Lab Scale Trials, Novel Trial Batches, Novel Exhibit Batches, Novel Validation Batches. In these steps, it is not divided to validation batches in three parts but the data of trials batches, Exhibit Batches and Validation batches are use and compile for production and used for validation. It also increases the batch size of the trial, exhibit batches. The new size of trials batches is not less than fifty Thousand, the exhibit batches increase up to two lack and the validation batches up to five lack. After preparing the batches all their data & drugs use for stability & maintain the validation record and compile data for the technology transfer in production department for preparing the marketed size batches.Keywords: batches, technique, preparation, scale up, validation
Procedia PDF Downloads 35723291 Jordan Water District Interactive Billing and Accounting Information System
Authors: Adrian J. Forca, Simeon J. Cainday III
Abstract:
The Jordan Water District Interactive Billing and Accounting Information Systems is designed for Jordan Water District to uplift the efficiency and effectiveness of its services to its customers. It is designed to process computations of water bills in accurate and fast way through automating the manual process and ensures that correct rates and fees are applied. In addition to billing process, a mobile app will be integrated into it to support rapid and accurate water bill generation. An interactive feature will be incorporated to support electronic billing to customers who wish to receive water bills through the use of electronic mail. The system will also improve, organize and avoid data inaccuracy in accounting processes because data will be stored in a database which is designed logically correct through normalization. Furthermore, strict programming constraints will be plunged to validate account access privilege based on job function and data being stored and retrieved to ensure data security, reliability, and accuracy. The system will be able to cater the billing and accounting services of Jordan Water District resulting in setting forth the manual process and adapt to the modern technological innovations.Keywords: accounting, bill, information system, interactive
Procedia PDF Downloads 25123290 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model
Authors: Ghazal Faraj, Andras Micsik
Abstract:
The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment
Procedia PDF Downloads 14523289 Gendered Labelling and Its Effects on Vhavenda Women
Authors: Matodzi Rapalalani
Abstract:
In context with Spencer's (2018) classic labelling theory, labels influence the perceptions of both the individual and other members of society. That is, once labelled, the individual act in ways that confirm the stereotypes attached to the label. This study, therefore, investigates the understanding of gendered labelling and its effects on Vhavenda women. Gender socialization and patriarchy have been viewed as the core causes of the problem. The literature presented the development of gendered labelling, forms of it, and other aspects. A qualitative method of data collection was used in this study, and semi-structural interviews were conducted. A total of 6 participants were used as it is easy to deal with a small sample. Thematic analysis was used as the data was interpreted and analyzed. Ethical issues such as confidentiality, informed consent, and voluntary participation were considered. Through the analysis and data interpretation, causes such as lack of Christian values, insecurities, and lust were mentioned as well as some of the effects such as frustrations, increased divorce, and low self-esteem.Keywords: gender, naming, Venda, women, African culture
Procedia PDF Downloads 9123288 Violence against Children Surveys: Analysis of the Peer-Reviewed Literature from 2009-2019
Authors: Kathleen Cravero, Amanda Nace, Samantha Ski
Abstract:
The Violence Against Children Surveys (VACS) is nationally representative surveys of male and female youth ages 13-24, designed to measure the burden of sexual, physical, and emotional violence experienced in childhood and adolescence. As of 2019, 24 countries implemented or are in the process of implementing a VACS, covering over ten percent of the world’s child population. Since the first article using VACS data from Swaziland was published in 2009, several peer-reviewed articles have been published on the VACS. However, no publications to date have analyzed the breadth of the work and analyzed how the data are represented in the peer-reviewed literature. In this study, we conducted a literature review of all peer-reviewed research that used VACS data or discussed the implementation and methodology of the VACS. The literature review revealed several important findings. Between 2009 and July 2019, thirty-five peer-reviewed articles using VACS data from 12 countries have been published. Twenty of the studies focus on one country, while 15 of the studies focus on two or more countries. Some countries are featured in the literature more than others, for example Kenya (N=14), Malawi (N=12), and Tanzania (N=12). A review of the research by gender demonstrates that research on violence against boys is under-represented. Only two studies specifically focused on boys/young men, while 11 studies focused only on violence against girls. This is despite research which suggests boys and girls experience similar rates of violence. A review of the publications by type of violence revealed significant differences in the types of violence being featured in the literature. Thirteen publications specifically focused on sexual violence, while three studies focused on physical violence, and only one study focused on emotional violence. Almost 70% of the peer-reviewed articles (24 of the 35) were first-authored by someone at the U.S. Centers for Disease Control and Prevention. There were very few first authors from VACS countries, which raises questions about who is leveraging the data and the extent to which capacities for data liberation are being developed within VACS countries. The VACS provide an unprecedented amount of information on the prevalence and past-year incidence of violence against children. Through a review of the peer-reviewed literature on the VACS we can begin to identify trends and gaps in how the data is being used as well as identify areas for further research.Keywords: data to action, global health, implementation science, violence against children surveys
Procedia PDF Downloads 13323287 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 45523286 Digitalization of Functional Safety - Increasing Productivity while Reducing Risks
Authors: Michael Scott, Phil Jarrell
Abstract:
Digitalization seems to be everywhere these days. So if one was to digitalize Functional Safety, what would that require: • Ability to directly use data from intelligent P&IDs / process design in a PHA / LOPA • Ability to directly use data from intelligent P&IDs in the SIS Design to support SIL Verification Calculations, SRS, C&Es, Functional Test Plans • Ability to create Unit Operation / SIF Libraries to radically reduce engineering manhours while ensuring consistency and improving quality of SIS designs • Ability to link data directly from a PHA / LOPA to SIS Designs • Ability to leverage reliability models and SRS details from SIS Designs to automatically program the Safety PLC • Ability to leverage SIS Test Plans to automatically create Safety PLC application logic Test Plans for a virtual FAT • Ability to tie real-time data from Process Historians / CMMS to assumptions in the PHA / LOPA and SIS Designs to generate leading indicators on protection layer health • Ability to flag SIS bad actors for proactive corrective actions prior to a near miss or loss of containment event What if I told you all of this was available today? This paper will highlight how the digital revolution has revolutionized the way Safety Instrumented Systems are designed, configured, operated and maintained.Keywords: IEC 61511, safety instrumented systems, functional safety, digitalization, IIoT
Procedia PDF Downloads 18123285 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 14923284 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation
Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques
Procedia PDF Downloads 28723283 The Effect of Job Insecurity on Attitude towards Change and Organizational Citizenship Behavior: Moderating Role of Islamic Work Ethics
Authors: Khurram Shahzad, Muhammad Usman
Abstract:
The main aim of this study is to examine the direct and interactive effects of job insecurity and Islamic work ethics on employee’s attitude towards change and organizational citizenship behavior. Design/methodology/approach: The data was collected from 171 male and female university teachers of Pakistan. Self administered, close ended questionnaires were used to collect the data. Data was analyzed through correlation and regression analysis. Findings: Through the analysis of data, it was found that job insecurity has a strong negative effect on the attitude towards change of university teachers. On the contrary, job insecurity has no significant effect on organizational citizenship behavior of university teachers. Our results also show that Islamic work ethics does not moderate the relationship of job insecurity and attitude towards change, while a strong moderation effect of Islamic wok ethics is found on the relationship of job insecurity and organizational citizenship behavior. Originality/value: This study for the first time examines the relationship of job insecurity with employee’s attitude towards change and organizational citizenship behavior with the moderating effect of Islamic work ethics.Keywords: job security, islamic work ethics, attitude towards change, organizational citizenship behavior
Procedia PDF Downloads 47523282 Assessment of the Knowledge and Practices of Healthcare Workers and Patients Regarding Prevention of Tuberculosis at a Tertiary Care Hospital of Southern Punjab
Authors: Muhammad Shahbaz Akhtar
Abstract:
Background; Tuberculosis remains a significant public health challenge in Pakistan, with high incidence and prevalence rates, particularly among vulnerable populations. Addressing the TB burden requires comprehensive efforts to improve healthcare infrastructure, increase access to quality diagnosis and treatment services, raise public awareness, and address socioeconomic determinants of health. Objective; To assess the knowledge and practices of healthcare workers and patients regarding prevention of tuberculosis at a tertiary care hospital of Southern Punjab.Material and methods; Data will be collected from 135 healthcare workers and 135 TB patients visiting Nishtar Hospital, Multan in this descriptive cross – sectional study using non – probability consecutive sampling technique. Proper approval will be taken from Hospital authorities to conduct this study. Study participants will be recruited after taking informed written consent, describing them objectives of this study. The study participants will be ensured of their confidentiality of the data and interviewed to assess their knowledge and practices regarding prevention of tuberculosis. Data Analysis Procedure; Data will be entered and analyzed by using SPSS version 25 to calculated mean and standard deviation for the numerical data such as age, duration of disease and duration of experience. Frequencies and percentages will be calculated for gender, age groups, level of knowledge, qualification, designation and practices. Impact of confounders like gender, age groups, duration of experience, disease duration, years of experience and designation will be assessed by stratification. Post stratification chi – square test will be applied at 0.05 level of significance at 95 % CI.Keywords: tuberculosis, data analysis, HIV/AIDS, preventable
Procedia PDF Downloads 2023281 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure
Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.Keywords: inverse method, FLUENT, k-ε model, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 46023280 Medical and Surgical Nursing Care
Authors: Nassim Salmi
Abstract:
Postoperative mobilization is an important part of fundamental care. Increased mobilization has a positive effect on recovery, but immobilization is still a challenge in postoperative care. Aims: To report how the establishment of a national nursing database was used to measure postoperative mobilization in patients undergoing surgery for ovarian cancer. Mobilization was defined as at least 3 hours out of bed on postoperative day 1, with the goal set at achieving this in 60% of patients. Clinical nurses on 4400 patients with ovarian cancer performed data entry. Findings: 46.7% of patients met the goal for mobilization on the first postoperative day, but variations in duration and type of mobilization were observed. Of those mobilized, 51.8% had been walking in the hallway. A national nursing database creates opportunities to optimize fundamental care. By comparing nursing data with oncological, surgical, and pathology data, it became possible to study mobilization in relation to cancer stage, comorbidity, treatment, and extent of surgery.Keywords: postoperative care, gynecology, nursing documentation, database
Procedia PDF Downloads 11623279 Social Enterprise Concept in Sustaining Agro-Industry Development in Indonesia: Case Study of Yourgood Social Business
Authors: Koko Iwan Agus Kurniawan, Dwi Purnomo, Anas Bunyamin, Arif Rahman Jaya
Abstract:
Fruters model is a concept of technopreneurship-based on empowerment, in which technology research results were designed to create high value-added products and implemented as a locomotive of collaborative empowerment; thereby, the impact was widely spread. This model still needs to be inventoried and validated concerning the influenced variables in the business growth process. Model validation accompanied by mapping was required to be applicable to Small Medium Enterprises (SMEs) agro-industry based on sustainable social business and existing real cases. This research explained the empowerment model of Yourgood, an SME, which emphasized on empowering the farmers/ breeders in farmers in rural areas, Cipageran, Cimahi, to housewives in urban areas, Bandung, West Java, Indonesia. This research reviewed some works of literature discussing the agro-industrial development associated with the empowerment and social business process and gained a unique business model picture with the social business platform as well. Through the mapped business model, there were several advantages such as technology acquisition, independence, capital generation, good investment growth, strengthening of collaboration, and improvement of social impacts that can be replicated on other businesses. This research used analytical-descriptive research method consisting of qualitative analysis with design thinking approach and that of quantitative with the AHP (Analytical Hierarchy Process). Based on the results, the development of the enterprise’s process was highly affected by supplying farmers with the score of 0.248 out of 1, being the most valuable for the existence of the enterprise. It was followed by university (0.178), supplying farmers (0.153), business actors (0.128), government (0.100), distributor (0.092), techno-preneurship laboratory (0.069), banking (0.033), and Non-Government Organization (NGO) (0.031).Keywords: agro-industry, small medium enterprises, empowerment, design thinking, AHP, business model canvas, social business
Procedia PDF Downloads 16823278 High-Value Health System for All: Technologies for Promoting Health Education and Awareness
Authors: M. P. Sebastian
Abstract:
Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.Keywords: big data, education, healthcare, information communication technologies (ICT), patients, technologies
Procedia PDF Downloads 21023277 The Recording of Personal Data in the Spanish Criminal Justice System and Its Impact on the Right to Privacy
Authors: Deborah García-Magna
Abstract:
When a person goes through the criminal justice system, either as a suspect, arrested, prosecuted or convicted, certain personal data are recorded, and a wide range of persons and organizations may have access to it. The recording of data can have a great impact on the daily life of the person concerned during the period of time determined by the legislation. In addition, this registered information can refer to various aspects not strictly related directly to the alleged or actually committed infraction. In some areas, the Spanish legislation does not clearly determine the cancellation period of the registers nor what happens when they are cancelled since some of the files are not really erased and remain recorded, even if their consultation is no more allowed or it is stated that they should not be taken into account. Thus, access to the recorded data of arrested or convicted persons may reduce their possibilities of reintegration into society. In this research, some of the areas in which data recording has a special impact on the lives of affected persons are analyzed in a critical manner, taking into account Spanish legislation and jurisprudence, and the influence of the European Court of Human Rights, the Council of Europe and other supranational instruments. In particular, the analysis cover the scope of video-surveillance in public spaces, the police record, the recording of personal data for the purposes of police investigation (especially DNA and psychological profiles), the registry of administrative and minor offenses (especially as they are taken into account to impose aggravating circumstaces), criminal records (of adults, minors and legal entities), and the registration of special circumstances occurred during the execution of the sentence (files of inmates under special surveillance –FIES–, disciplinary sanctions, special therapies in prison, etc.).Keywords: ECHR jurisprudence, formal and informal criminal control, privacy, disciplinary sanctions, social reintegration
Procedia PDF Downloads 14423276 Overview of a Quantum Model for Decision Support in a Sensor Network
Authors: Shahram Payandeh
Abstract:
This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.Keywords: quantum model, sensor space, sensor network, decision support
Procedia PDF Downloads 22723275 How Validated Nursing Workload and Patient Acuity Data Can Promote Sustained Change and Improvements within District Health Boards. the New Zealand Experience
Authors: Rebecca Oakes
Abstract:
In the New Zealand public health system, work has been taking place to use electronic systems to convey data from the ‘floor to the board’ that makes patient needs, and therefore nursing work, visible. For nurses, these developments in health information technology puts us in a very new and exciting position of being able to articulate the work of nursing through a language understood at all levels of an organisation, the language of acuity. Nurses increasingly have a considerable stake-hold in patient acuity data. Patient acuity systems, when used well, can assist greatly in demonstrating how much work is required, the type of work, and when it will be required. The New Zealand Safe Staffing Unit is supporting New Zealand nurses to create a culture of shared governance, where nursing data is informing policies, staffing methodologies and forecasting within their organisations. Assisting organisations to understand their acuity data, strengthening user confidence in using electronic patient acuity systems, and ensuring nursing and midwifery workload is accurately reflected is critical to the success of the safe staffing programme. Nurses and midwives have the capacity via an acuity tool to become key informers of organisational planning. Quality patient care, best use of health resources and a quality work environment are essential components of a safe, resilient and well resourced organisation. Nurses are the key informers of this information. In New Zealand a national level approach is paving the way for significant changes to the understanding and use of patient acuity and nursing workload information.Keywords: nursing workload, patient acuity, safe staffing, New Zealand
Procedia PDF Downloads 38223274 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 142