Search results for: data mining techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29842

Search results for: data mining techniques

27532 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 26
27531 The Interaction between Human and Environment on the Perspective of Environmental Ethics

Authors: Mella Ismelina Farma Rahayu

Abstract:

Environmental problems could not be separated from unethical human perspectives and behaviors toward the environment. There is a fundamental error in the philosophy of people’s perspective about human and nature and their relationship with the environment, which in turn will create an inappropriate behavior in relation to the environment. The aim of this study is to investigate and to understand the ethics of the environment in the context of humans interacting with the environment by using the hermeneutic approach. The related theories and concepts collected from literature review are used as data, which were analyzed by using interpretation, critical evaluation, internal coherence, comparisons, and heuristic techniques. As a result of this study, there will be a picture related to the interaction of human and environment in the perspective of environmental ethics, as well as the problems of the value of ecological justice in the interaction of humans and environment. We suggest that the interaction between humans and environment need to be based on environmental ethics, in a spirit of mutual respect between humans and the natural world.

Keywords: environment, environmental ethics, interaction, value

Procedia PDF Downloads 422
27530 A Literature Study on IoT Based Monitoring System for Smart Agriculture

Authors: Sonu Rana, Jyoti Verma, A. K. Gautam

Abstract:

In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.

Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology

Procedia PDF Downloads 116
27529 The Impact of Social Media Exposure on COVID- 19 Vaccine Hesitancy “A Comparative Study on the Public in Egypt and the United Arab Emirates”

Authors: Lamiaa Shehata

Abstract:

The current (COVID-19) pandemic is one of the international crises, and a lot of efforts have been directed toward the improvement of efficient vaccines, however vaccine hesitancy is one of the universal menaces that make the fulfillment of society immunity very hard. The World Health Organization acknowledges vaccine hesitancy as the society’s maximum risk to people's health protection, especially in little and moderate-revenue nations. Social media is strong in observing audience behaviors and evaluating the circulation, which would supply useful data for strategy makers. It has a significant function in spreading facts during the pandemic, it could assist to boost protective manners. The objective of this study is to determine the effects of social media exposure on vaccine hesitancy. Data were collected using a survey in a form of a structured questionnaire conducted during December 2021- January 2022 using convenient sampling techniques (680) in Egypt and the United Arab Emirates. The results revealed that there was a significant relationship between the high exposure to social media and the refusal of the Covid19 vaccine also, the percentage of the refusal of the vaccine is higher in Egypt, however, UAE forced people to take the vaccine. Furthermore, public attitudes toward COVID-19 vaccination vary from gender and region. In conclusion, policymakers must adjust their policies through the use of social media to immediate actions to vaccine-related news to support vaccination approval.

Keywords: COVID-19, hesitancy, social media, vaccine

Procedia PDF Downloads 139
27528 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore

Authors: Ronal Muresano, Andrea Pagano

Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool

Procedia PDF Downloads 369
27527 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning

Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens

Abstract:

Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.

Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence

Procedia PDF Downloads 159
27526 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
27525 Comparison of Quality Indices for Sediment Assessment in Ireland

Authors: Tayyaba Bibi, Jenny Ronan, Robert Hernan, Kathleen O’Rourke, Brendan McHugh, Evin McGovern, Michelle Giltrap, Gordon Chambers, James Wilson

Abstract:

Sediment contamination is a major source of ecosystem stress and has received significant attention from the scientific community. Both the Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD) require a robust set of tools for biological and chemical monitoring. For the MSFD in particular, causal links between contaminant and effects need to be assessed. Appropriate assessment tools are required in order to make an accurate evaluation. In this study, a range of recommended sediment bioassays and chemical measurements are assessed in a number of potentially impacted and lowly impacted locations around Ireland. Previously, assessment indices have been developed on individual compartments, i.e. contaminant levels or biomarker/bioassay responses. A number of assessment indices are applied to chemical and ecotoxicological data from the Seachange project (Project code) and compared including the metal pollution index (MPI), pollution load index (PLI) and Chapman index for chemistry as well as integrated biomarker response (IBR). The benefits and drawbacks of the use of indices and aggregation techniques are discussed. In addition to this, modelling of raw data is investigated to analyse links between contaminant and effects.

Keywords: bioassays, contamination indices, ecotoxicity, marine environment, sediments

Procedia PDF Downloads 228
27524 Flood Vulnerability Zoning for Blue Nile Basin Using Geospatial Techniques

Authors: Melese Wondatir

Abstract:

Flooding ranks among the most destructive natural disasters, impacting millions of individuals globally and resulting in substantial economic, social, and environmental repercussions. This study's objective was to create a comprehensive model that assesses the Nile River basin's susceptibility to flood damage and improves existing flood risk management strategies. Authorities responsible for enacting policies and implementing measures may benefit from this research to acquire essential information about the flood, including its scope and susceptible areas. The identification of severe flood damage locations and efficient mitigation techniques were made possible by the use of geospatial data. Slope, elevation, distance from the river, drainage density, topographic witness index, rainfall intensity, distance from road, NDVI, soil type, and land use type were all used throughout the study to determine the vulnerability of flood damage. Ranking elements according to their significance in predicting flood damage risk was done using the Analytic Hierarchy Process (AHP) and geospatial approaches. The analysis finds that the most important parameters determining the region's vulnerability are distance from the river, topographic witness index, rainfall, and elevation, respectively. The consistency ratio (CR) value obtained in this case is 0.000866 (<0.1), which signifies the acceptance of the derived weights. Furthermore, 10.84m2, 83331.14m2, 476987.15m2, 24247.29m2, and 15.83m2 of the region show varying degrees of vulnerability to flooding—very low, low, medium, high, and very high, respectively. Due to their close proximity to the river, the northern-western regions of the Nile River basin—especially those that are close to Sudanese cities like Khartoum—are more vulnerable to flood damage, according to the research findings. Furthermore, the AUC ROC curve demonstrates that the categorized vulnerability map achieves an accuracy rate of 91.0% based on 117 sample points. By putting into practice strategies to address the topographic witness index, rainfall patterns, elevation fluctuations, and distance from the river, vulnerable settlements in the area can be protected, and the impact of future flood occurrences can be greatly reduced. Furthermore, the research findings highlight the urgent requirement for infrastructure development and effective flood management strategies in the northern and western regions of the Nile River basin, particularly in proximity to major towns such as Khartoum. Overall, the study recommends prioritizing high-risk locations and developing a complete flood risk management plan based on the vulnerability map.

Keywords: analytic hierarchy process, Blue Nile Basin, geospatial techniques, flood vulnerability, multi-criteria decision making

Procedia PDF Downloads 71
27523 Best Resource Recommendation for a Stochastic Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.

Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model

Procedia PDF Downloads 390
27522 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element

Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu

Abstract:

Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.

Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography

Procedia PDF Downloads 112
27521 sing Eye Tracking to Measure the Impact of Persuasion Principles in Phishing Emails

Authors: Laura Bishop, Isabel Jones, Linn Halvorsen, Angela Smith

Abstract:

Phishing emails are a form of social engineering where attackers deceive email users into revealing sensitive information or installing malware such as ransomware. Scammers often use persuasion techniques to influence email users to interact with malicious content. This study will use eye-tracking equipment to analyze how participants respond to and process Cialdini’s persuasion principles when utilized within phishing emails. Eye tracking provides insights into what is happening on the subconscious level of the brain that the participant may not be aware of. An experiment is conducted to track participant eye movements, whilst interacting with and then filing a series of persuasive emails delivered at random. Eye tracking metrics will be analyzed in relation to whether a malicious email has been identified as phishing (filed as ‘suspicious’) or not phishing (filed in any other folder). This will help determine the most influential persuasion techniques and those 'areas of interest' within an email that require intervention. The results will aid further research on how to reduce the effects of persuasion on human decision-making when interacting with phishing emails.

Keywords: cybersecurity, human-centric, phishing, psychology

Procedia PDF Downloads 83
27520 Ethical Leadership and Employee Creative Behaviour: A Case Study of a State-Owned Enterprise in South Africa

Authors: Krishna Kistan Govender, Alex Masianoga

Abstract:

The aim of this explanatory study was to critically understand how ethical leadership impacts employee creative behaviour, as well as the creative behaviour dimensions, in a South African transport and logistics SOE. A quantitative study was conducted using a pre-developed questionnaire, and data for 160 middle and executive managers was analysed through structural equation modelling and multiple regression techniques conducted with the Smart PLS statistical software. All five hypothesized relationships were supported, and it was confirmed that ethical leadership has a significant positive influence on employee creative behaviour, as well as on each of the creative behaviour dimensions, namely: idea exploration, idea generation, idea championing, and idea implementation.

Keywords: ethical leaders, employee creative behaviour, state-owned enterprises, South Africa

Procedia PDF Downloads 126
27519 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 480
27518 Spatial Assessment of Creek Habitats of Marine Fish Stock in Sindh Province

Authors: Syed Jamil H. Kazmi, Faiza Sarwar

Abstract:

The Indus delta of Sindh Province forms the largest creeks zone of Pakistan. The Sindh coast starts from the mouth of Hab River and terminates at Sir Creek area. In this paper, we have considered the major creeks from the site of Bin Qasim Port in Karachi to Jetty of Keti Bunder in Thatta District. A general decline in the mangrove forest has been observed that within a span of last 25 years. The unprecedented human interventions damage the creeks habitat badly which includes haphazard urban development, industrial and sewage disposal, illegal cutting of mangroves forest, reduced and inconsistent fresh water flow mainly from Jhang and Indus rivers. These activities not only harm the creeks habitat but affected the fish stock substantially. Fishing is the main livelihood of coastal people but with the above-mentioned threats, it is also under enormous pressure by fish catches resulted in unchecked overutilization of the fish resources. This pressure is almost unbearable when it joins with deleterious fishing methods, uncontrolled fleet size, increase trash and by-catch of juvenile and illegal mesh size. Along with these anthropogenic interventions study area is under the red zone of tropical cyclones and active seismicity causing floods, sea intrusion, damage mangroves forests and devastation of fish stock. In order to sustain the natural resources of the Indus Creeks, this study was initiated with the support of FAO, WWF and NIO, the main purpose was to develop a Geo-Spatial dataset for fish stock assessment. The study has been spread over a year (2013-14) on monthly basis which mainly includes detailed fish stock survey, water analysis and few other environmental analyses. Environmental analysis also includes the habitat classification of study area which has done through remote sensing techniques for 22 years’ time series (1992-2014). Furthermore, out of 252 species collected, fifteen species from estuarine and marine groups were short-listed to measure the weight, health and growth of fish species at each creek under GIS data through SPSS system. Furthermore, habitat suitability analysis has been conducted by assessing the surface topographic and aspect derivation through different GIS techniques. The output variables then overlaid in GIS system to measure the creeks productivity. Which provided the results in terms of subsequent classes: extremely productive, highly productive, productive, moderately productive and less productive. This study has revealed the Geospatial tools utilization along with the evaluation of the fisheries resources and creeks habitat risk zone mapping. It has also been identified that the geo-spatial technologies are highly beneficial to identify the areas of high environmental risk in Sindh Creeks. This has been clearly discovered from this study that creeks with high rugosity are more productive than the creeks with low levels of rugosity. The study area has the immense potential to boost the economy of Pakistan in terms of fish export, if geo-spatial techniques are implemented instead of conventional techniques.

Keywords: fish stock, geo-spatial, productivity analysis, risk

Procedia PDF Downloads 245
27517 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 156
27516 Compilation and Statistical Analysis of an Arabic-English Legal Corpus in Sketch Engine

Authors: C. Brierley, H. El-Farahaty, A. Farhan

Abstract:

The Leeds Parallel Corpus of Arabic-English Constitutions is a parallel corpus for the Arabic legal domain. Analysis of legal language via Corpus Linguistics techniques is an important development. In legal proceedings, a corpus-based approach to disambiguating meaning is set to replace the dictionary as an interpretative tool, and legal scholarship in the States is now attuned to the potential for Text Analytics over vast quantities of text-based legal material, following the business and medical industries. This trend is reflected in Europe: the interdisciplinary research group in Computer Assisted Legal Linguistics mines big data collections of legal and non-legal texts to analyse: legal interpretations; legal discourse; the comprehensibility of legal texts; conflict resolution; and linguistic human rights. This paper focuses on ‘dignity’ as an important aspect of the overarching concept of human rights in current constitutions across the Arab world. We have compiled a parallel, Arabic-English raw text corpus (169,861 Arabic words and 205,893 English words) from reputable websites such as the World Intellectual Property Organisation and CONSTITUTE, and uploaded and queried our corpus in Sketch Engine. Our most challenging task was sentence-level alignment of Arabic-English data. This entailed manual intervention to ensure correspondence on a one-to-many basis since Arabic sentences differ from English in length and punctuation. We have searched for morphological variants of ‘dignity’ (رامة ك, karāma) in the Arabic data and inspected their English translation equivalents. The term occurs most frequently in the Sudanese constitution (10 instances), and not at all in the constitution of Palestine. Its most frequent collocate, determined via the logDice statistic in Sketch Engine, is ‘human’ as in ‘human dignity’.

Keywords: Arabic constitution, corpus-based legal linguistics, human rights, parallel Arabic-English legal corpora

Procedia PDF Downloads 183
27515 Multidimensional Poverty and Its Correlates among Rural Households in Limpopo Province, South Africa

Authors: Tamunotonye Mayowa Braide, Isaac Oluwatayo

Abstract:

This study investigates multidimensional poverty, and its correlates among rural households in Sekhukhune and Capricorn District municipalities (SDM & CDM) in Limpopo Province, South Africa. Primary data were collected from 407 rural households selected through purposive and simple random sampling techniques. Analytical techniques employed include descriptive statistics, principal component analysis (PCA), and the Alkire Foster (A-F) methodology. The results of the descriptive statistics showed there are more females (66%) than males (34%) in rural areas of Limpopo Province, with about 45% of them having secondary school education as the highest educational level attained and only about 3% do not have formal education. In the analysis of deprivation, eight dimensions of deprivation, constructed from 21 variables, were identified using the PCA. These dimensions include type and condition of dwelling water and sanitation, educational attainment and income, type of fuel for cooking and heating, access to clothing and cell phone, assets and fuel for light, health condition, crowding, and child health. In identifying the poor with poverty cut-off (0.13) of all indicators, about 75.9% of the rural households are deprived in 25% of the total dimensions, with the adjusted headcount ratio (M0) being 0.19. Multidimensional poverty estimates showed higher estimates of poor rural households with 71%, compared to 29%, which fall below the income poverty line. The study conducted poverty decomposition, using sub-groups within the area by examining regions and household characteristics. In SDM, there are more multidimensionally poor households than in CDM. The water and sanitation dimension is the largest contributor to the multidimensional poverty index (MPI) in rural areas of Limpopo Province. The findings can, therefore, assist in better design of welfare policy and target poverty alleviation programs and as well help in efficient resource allocation at the provincial and local municipality levels.

Keywords: Alkire-Foster methodology, Limpopo province, multidimensional poverty, principal component analysis, South Africa

Procedia PDF Downloads 164
27514 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: daily rainfall, image processing, approximation, pixel value data

Procedia PDF Downloads 387
27513 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods

Authors: Robert Cazar, Nathaly Maza

Abstract:

Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.

Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks

Procedia PDF Downloads 109
27512 The Quest for Palestinian Identity throughout Zayyad's Poetry

Authors: Saleem Abu Jaber, Khaled Igbaria

Abstract:

Tawfiq Zayyad was born in Nazareth in 1929 and died in 1994. He was a prominent Palestinian poet, writer, scholar and politician. He had participated in the Palestinian political life not only as a poet and writer but also as a mayor of Nazareth as well as a member of the Israeli Knesset. All of the above confirms not only that it is worthy to investigate deeply and academically Palestinian commitment and identity throughout poems of the poet, but also that the poet deserves to include him within the top significant Arab Palestinian poets in despite of his being Israeli citizen. This paper studies to what extent the poet was committed to the Palestinian goals and agenda throughout poetry as well as to explore the ways and techniques in which the poet employed poetry in order to explore the Palestinian belonging and identification of the Palestinians in Israel. Methodologically, this paper will literary analyze some considerable poems of the poet looking in-depth critically and objectively. Moreover, this article relies on several poems of the poet because they are much relevant to the aimed discussion. By addressing both commitment and identity, this article hopes to contribute to a fuller understanding of Palestinian poets of 1960s to 2000s.

Keywords: Tawfiq Zayyad, Palestinian poetry, poetic commitment, poetic techniques

Procedia PDF Downloads 163
27511 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management

Authors: Kenneth Harper

Abstract:

The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.

Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups

Procedia PDF Downloads 27
27510 Specification of Requirements to Ensure Proper Implementation of Security Policies in Cloud-Based Multi-Tenant Systems

Authors: Rebecca Zahra, Joseph G. Vella, Ernest Cachia

Abstract:

The notion of cloud computing is rapidly gaining ground in the IT industry and is appealing mostly due to making computing more adaptable and expedient whilst diminishing the total cost of ownership. This paper focuses on the software as a service (SaaS) architecture of cloud computing which is used for the outsourcing of databases with their associated business processes. One approach for offering SaaS is basing the system’s architecture on multi-tenancy. Multi-tenancy allows multiple tenants (users) to make use of the same single application instance. Their requests and configurations might then differ according to specific requirements met through tenant customisation through the software. Despite the known advantages, companies still feel uneasy to opt for the multi-tenancy with data security being a principle concern. The fact that multiple tenants, possibly competitors, would have their data located on the same server process and share the same database tables heighten the fear of unauthorised access. Security is a vital aspect which needs to be considered by application developers, database administrators, data owners and end users. This is further complicated in cloud-based multi-tenant system where boundaries must be established between tenants and additional access control models must be in place to prevent unauthorised cross-tenant access to data. Moreover, when altering the database state, the transactions need to strictly adhere to the tenant’s known business processes. This paper focuses on the fact that security in cloud databases should not be considered as an isolated issue. Rather it should be included in the initial phases of the database design and monitored continuously throughout the whole development process. This paper aims to identify a number of the most common security risks and threats specifically in the area of multi-tenant cloud systems. Issues and bottlenecks relating to security risks in cloud databases are surveyed. Some techniques which might be utilised to overcome them are then listed and evaluated. After a description and evaluation of the main security threats, this paper produces a list of software requirements to ensure that proper security policies are implemented by a software development team when designing and implementing a multi-tenant based SaaS. This would then assist the cloud service providers to define, implement, and manage security policies as per tenant customisation requirements whilst assuring security for the customers’ data.

Keywords: cloud computing, data management, multi-tenancy, requirements, security

Procedia PDF Downloads 156
27509 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 516
27508 Predicting Machine-Down of Woodworking Industrial Machines

Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta

Abstract:

In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.

Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence

Procedia PDF Downloads 226
27507 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 379
27506 Separation and Purification of Oligostilbenes Using HPLC with Dereplication Strategy

Authors: Nurhuda Manshoor, Mohd Fazirulrahman Fathil, Muhammad Hakim Jaafar, Mohd Amirul S. A. Jalil

Abstract:

The leaves of Neobalanocarpus heimii were investigated for their oligostilbene contents. Prior to isolation process, the determinations of compounds were based on mass spectrometric fragmentation patterns. Three compounds, heimiol B, hopeaphenol, and vaticaphenol A were identified directly from the crude extract. Preparative high-performance liquid chromatography (HPLC) was used to isolate and purify the other compounds. The purified compounds were then analyzed using NMR spectroscopy to identify the compound structure and stereochemistry. The method employed for the research modified to comply with different HPLC techniques such as preparative and analytical techniques. The crude sample was injected into preparative HPLC to obtain several fractions which consist of oligostilbene mixture. The fractions were further isolated using analytical HPLC to obtain four pure compounds. The compounds then were characterized using nuclear magnetic resonance (NMR). The result shows that the leaves extract of Neobalanocarpus heimii contain three oligostilbenes, namely vaticanol A, balanocarpol, and vaticaphenol A, and a galactopyranose.

Keywords: balanocarpol, hemiol B, hopeaphenol, vaticanol A, vaticaphenol A

Procedia PDF Downloads 497
27505 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance

Procedia PDF Downloads 490
27504 Energy Saving Techniques for MIMO Decoders

Authors: Zhuofan Cheng, Qiongda Hu, Mohammed El-Hajjar, Basel Halak

Abstract:

Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems.

Keywords: energy, lattice reduction, MIMO, VLSI

Procedia PDF Downloads 329
27503 Determination of Genetic Markers, Microsatellites Type, Liked to Milk Production Traits in Goats

Authors: Mohamed Fawzy Elzarei, Yousef Mohammed Al-Dakheel, Ali Mohamed Alseaf

Abstract:

Modern molecular techniques, like single marker analysis for linked traits to these markers, can provide us with rapid and accurate genetic results. In the last two decades of the last century, the applications of molecular techniques were reached a faraway point in cattle, sheep, and pig. In goats, especially in our region, the application of molecular techniques is still far from other species. As reported by many researchers, microsatellites marker is one of the suitable markers for lie studies. The single marker linked to traits of interest is one technique allowed us to early select animals without the necessity for mapping the entire genome. Simplicity, applicability, and low cost of this technique gave this technique a wide range of applications in many areas of genetics and molecular biology. Also, this technique provides a useful approach for evaluating genetic differentiation, particularly in populations that are poorly known genetically. The expected breeding value (EBV) and yield deviation (YD) are considered as the most parameters used for studying the linkage between quantitative characteristics and molecular markers, since these values are raw data corrected for the non-genetic factors. A total of 17 microsatellites markers (from chromosomes 6, 14, 18, 20 and 23) were used in this study to search for areas that could be responsible for genetic variability for some milk traits and search of chromosomal regions that explain part of the phenotypic variance. Results of single-marker analyses were used to identify the linkage between microsatellite markers and variation in EBVs of these traits, Milk yield, Protein percentage, Fat percentage, Litter size and weight at birth, and litter size and weight at weaning. The estimates of the parameters from forward and backward solutions using stepwise regression procedure on milk yield trait, only two markers, OARCP9 and AGLA29, showed a highly significant effect (p≤0.01) in backward and forward solutions. The forward solution for different equations conducted that R2 of these equations were highly depending on only two partials regressions coefficient (βi,) for these markers. For the milk protein trait, four marker showed significant effect BMS2361, CSSM66 (p≤0.01), BMS2626, and OARCP9 (p≤0.05). By the other way, four markers (MCM147, BM1225, INRA006, andINRA133) showed highly significant effect (p≤0.01) in both backward and forward solutions in association with milk fat trait. For both litter size at birth and at weaning traits, only one marker (BM143(p≤0.01) and RJH1 (p≤0.05), respectively) showed a significant effect in backward and forward solutions. The estimates of the parameters from forward and backward solution using stepwise regression procedure on litter weight at birth (LWB) trait only one marker (MCM147) showed highly significant effect (p≤0.01) and two marker (ILSTS011, CSSM66) showed a significant effect (p≤0.05) in backward and forward solutions.

Keywords: microsatellites marker, estimated breeding value, stepwise regression, milk traits

Procedia PDF Downloads 93