Search results for: continuous speed profile data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30095

Search results for: continuous speed profile data

27785 The Role of Leadership in Enhancing Health Information Systems to Improve Patient Outcomes in China

Authors: Nisar Ahmad, Xuyi, Ali Akbar

Abstract:

As healthcare systems worldwide strive for improvement, the integration of advanced health information systems (HIS) has emerged as a pivotal strategy. This study aims to investigate the critical role of leadership in the implementation and enhancement of HIS in Chinese hospitals and how such leadership can drive improvements in patient outcomes and overall healthcare satisfaction. We propose a comprehensive study to be conducted across various hospitals in China, targeting healthcare professionals as the primary population. The research will leverage established theories of transformational leadership and technology acceptance to underpin the analysis. In our approach, data will be meticulously gathered through surveys and interviews, focusing on the experiences and perceptions of healthcare professionals regarding HIS implementation and its impact on patient care. The study will utilize SPSS and SmartPLS software for robust data analysis, ensuring precise and comprehensive insights into the correlation between leadership effectiveness and HIS success. We hypothesize that strong, visionary leadership is essential for the successful adoption and optimization of HIS, leading to enhanced patient outcomes and increased satisfaction with healthcare services. By applying advanced statistical methods, we aim to identify key leadership traits and practices that significantly contribute to these improvements. Our research will provide actionable insights for policymakers and healthcare administrators in China, offering evidence-based recommendations to foster leadership that champions HIS and drives continuous improvement in healthcare delivery. This study will contribute to the global discourse on health information systems, emphasizing the future role of leadership in transforming healthcare environments and outcomes.

Keywords: health information systems, leadership, patient outcomes, healthcare satisfaction

Procedia PDF Downloads 36
27784 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
27783 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan

Authors: Dina Ahmad Alkhodary

Abstract:

This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.

Keywords: data, mining, development, business

Procedia PDF Downloads 498
27782 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 309
27781 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
27780 The Factors Predicting Credibility of News in Social Media in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.

Keywords: credibility of news, behaviors and attitudes, social media, web board

Procedia PDF Downloads 468
27779 Exposure Assessment to Heavy Metals and Flame Retardants Among Moroccan Children and Their Impact on the Epigenetic Profile

Authors: Kaoutar Chbihi, Aziza Menouni, Emilie Hardy, Matteo Creta, Nathalie Grova, An Van Nieuwenhuyse, Lode Godderis, Samir El Jaafari, Radu-Corneliu Duca

Abstract:

Industrial products and materials are often treated with additional compounds like brominated flame retardants (BFRs) and heavy metals in order to prevent their ignition, increase their functionality and improve their performance like electrical conductivity. Consequently, this could potentially expose children to harmful chemicals through indoor dust and through hand-to-mouth or toy-chewing behaviors. The aim of this study was to assess the exposure of Moroccan children aged 5-11 years to BFRs and heavy metal elements and investigate their impacts on the epigenetic profile, namely through global DNA methylation modifications. First, parents were asked to answer a questionnaire on children’s lifestyle, then blood and urine samples were collected from (n= 93) children, following the ethical guidelines, for biomonitoring and DNA methylation analysis, using a set of solid phase extraction (SPE), LC-MS/MS, GC-MS/MS and ICP/MS techniques. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL), while metal elements were detected in more than 90% of samples. No association was found between BFRs and global DNA methylation, unlike metal element levels that showed significant variations with global DNA methylation biomarkers, namely 5-mdC, 5-OH-mdC and N⁶-mA levels. To conclude, Moroccan children could be significantly exposed to flame retardant compounds and heavy metal elements through several routes, such as dust or equipment usage and are therefore susceptible to the adverse health effects that could be linked with such chemicals. Further research is required to assess the exposure to environmental pollutants among the Moroccan population in order to protect Moroccan health and prevent the incidence of diseases.

Keywords: biomonitoring, children, DNA methylation, epigenetics, flame retardants, heavy metals, Morocco

Procedia PDF Downloads 97
27778 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479
27777 Affective Attributes and Second Language Performance of Third Year Maritime Students: A Teacher's Compass

Authors: Sonia Pajaron, Flaviano Sentina, Ranulfo Etulle

Abstract:

Learning a second language calls for a total commitment from the learner whose response is necessary to successfully send and receive linguistic messages. It is relevant to virtually every aspect of human behaviour which is even more challenging when the components on -affective domains- are involved in second language learning. This study investigated the association between the identified affective attributes and second language performance of the one hundred seventeen (117) randomly selected third year maritime students. A descriptive-correlational method was utilized to generate data on their affective attributes while composition writing (2 series) and IELTS-based interview was done for speaking test. Additionally, to establish the respondents’ English language profile, data on their high school grades (GPA), entrance exam results in English subject (written) as well as in the interview was extracted as baseline information. Data were subjected to various statistical treatment (average means, percentages and pearson-r moment coefficient correlation) and found out that, Nautical Science and Marine Engineering students were found to have average high school grade, entrance test results, both written and in the interview turned out to be very satisfactory at 50% passing percentage. Varied results were manifested in their affective attributes towards learning the second language. On attitude, nautical science students had true positive attitude while marine engineering had only a moderate positive one. Secondly, the former were positively motivated to learn English while the latter were just moderately motivated. As regards anxiety, both groups embodied a moderate level of anxiety in the English language. Finally, data showed that nautical science students exuded real confidence while the marine engineering group had only moderate confidence with the second language. Respondents’ English academic achievement (GWA) was significantly correlated with confidence and speaking with anxiety towards the second language among the students from the nautical science group with moderate positive and low negative degree of correlation, respectively. On the other hand, the marine engineering students’ speaking test result was significantly correlated with anxiety and self-confidence with a moderate negative and low positive degree of correlation, respectively while writing was significantly correlated with motivation bearing a low positive degree of correlation.

Keywords: affective attributes, second language, second language performance, anxiety, attitude, self-confidence and motivation

Procedia PDF Downloads 271
27776 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends

Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez

Abstract:

This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.

Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis

Procedia PDF Downloads 83
27775 Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface

Authors: Pujan Sarkar

Abstract:

Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples.

Keywords: Al powder, composite, epoxy, friction, glass fiber

Procedia PDF Downloads 126
27774 Cross-border Data Transfers to and from South Africa

Authors: Amy Gooden, Meshandren Naidoo

Abstract:

Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.

Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa

Procedia PDF Downloads 125
27773 Association Between Advanced Parental Age and Implantation Failure: A Prospective Cohort Study in Anhui, China

Authors: Jiaqian Yin, Ruoling Chen, David Churchill, Huijuan Zou, Peipei Guo, Chunmei Liang, Xiaoqing Peng, Zhikang Zhang, Weiju Zhou, Yunxia Cao

Abstract:

Purpose: This study aimed to explore the interaction of male and female age on implantation failure from in vitro fertilisation (IVF)/ intracytoplasmic sperm injection (ICSI) treatments in couples following their first cycles using the Anhui Maternal-Child Health Study (AMCHS). Methods: The AMCHS recruited 2042 infertile couples who were physically fit for in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatment at the Reproductive Centre of the First Affiliated Hospital of Anhui Medical University between May 2017 to April 2021. This prospective cohort study analysed the data from 1910 cohort couples for the current paper data analysis. The multivariate logistic regression model was used to identify the effect of male and female age on implantation failure after controlling for confounding factors. Male age and female age were examined as continuous and categorical (male age: 20-<25, 25-<30, 30-<35, 35-<40, ≥40; female age: 20-<25, 25-<30, 30-<35, 35-<40, ≥40) predictors. Results: Logistic regression indicated that advanced maternal age was associated with increased implantation failure (P<0.001). There was evidence of an interaction between maternal age (30-<35 and ≥ 35) and paternal age (≥35) on implantation failure. (p<0.05). Only when the male was ≥35 years of increased maternal age was associated with the risk of implantation failure. Conclusion: In conclusion, there was an additive effect on implantation failure with advanced parental age. The impact of advanced maternal age was only seen in the older paternal age group. The delay of childbearing in both men and women will be a serious public issue that may contribute to a higher risk of implantation failure in patients needing assisted reproductive technology (ART).

Keywords: parental age, infertility, cohort study, IVF

Procedia PDF Downloads 154
27772 Impact of Interdisciplinary Therapy Allied to Online Health Education on Cardiometabolic Parameters and Inflammation Factor Rating in Obese Adolescents

Authors: Yasmin A. M. Ferreira, Ana C. K. Pelissari, Sofia De C. F. Vicente, Raquel M. Da S. Campos, Deborah C. L. Masquio, Lian Tock, Lila M. Oyama, Flavia C. Corgosinho, Valter T. Boldarine, Ana R. Dâmaso

Abstract:

The prevalence of overweight and obesity is growing around the world and currently considered a global epidemic. Food and nutrition are essential requirements for promoting health and protecting non-communicable chronic diseases, such as obesity and cardiovascular disease. Specific dietary components may modulate the inflammation and oxidative stress in obese individuals. Few studies have investigated the dietary Inflammation Factor Rating (IFR) in obese adolescents. The IFR was developed to characterize an individual´s diet on anti- to pro-inflammatory score. This evaluation contributes to investigate the effects of inflammatory diet in metabolic profile in several individual conditions. Objectives: The present study aims to investigate the effects of a multidisciplinary weight loss therapy on inflammation factor rating and cardiometabolic risk in obese adolescents. Methods: A total of 26 volunteers (14-19 y.o) were recruited and submitted to 20 weeks interdisciplinary therapy allied to health education website- Ciclo do Emagrecimento®, including clinical, nutritional, psychological counseling and exercise training. The body weight was monitored weekly by self-report and photo. The adolescents answered a test to evaluate the knowledge of the topics covered in the videos. A 24h dietary record was applied at the baseline and after 20 weeks to assess the food intake and to calculate IFR. A negative IFR suggests that diet may have inflammatory effects and a positive IFR indicates an anti-inflammatory effect. Statistical analysis was performed using the program STATISTICA version 12.5 for Windows. The adopted significant value was α ≤ 5 %. Data normality was verified with the Kolmogorov Smirnov test. Data were expressed as mean±SD values. To analyze the effects of intervention it was applied test t. Pearson´s correlations test was performed. Results: After 20 weeks of treatment, body mass index (BMI), body weight, body fat (kg and %), abdominal and waist circumferences decreased significantly. The mean of high-density lipoprotein cholesterol (HDL-c) increased after the therapy. Moreover, it was found an improvement of inflammation factor rating from -427,27±322,47 to -297,15±240,01, suggesting beneficial effects of nutritional counselling. Considering the correlations analysis, it was found that pro-inflammatory diet is associated with increase in the BMI, very low-density lipoprotein cholesterol (VLDL), triglycerides, insulin and insulin resistance index (HOMA-IR); while an anti-inflammatory diet is associated with improvement of HDL-c and insulin sensitivity Check index (QUICKI). Conclusion: The 20-week blended multidisciplinary therapy was effective to reduce body weight, anthropometric circumferences and improve inflammatory markers in obese adolescents. In addition, our results showed that an increase in inflammatory profile diet is associated with cardiometabolic parameters, suggesting the relevance to stimulate anti-inflammatory diet habits as an effective strategy to treat and control of obesity and related comorbidities. Financial Support: FAPESP (2017/07372-1) and CNPq (409943/2016-9)

Keywords: cardiometabolic risk, inflammatory diet, multidisciplinary therapy, obesity

Procedia PDF Downloads 194
27771 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.

Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling

Procedia PDF Downloads 433
27770 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 166
27769 Exploring Management of the Fuzzy Front End of Innovation in a Product Driven Startup Company

Authors: Dmitry K. Shaytan, Georgy D. Laptev

Abstract:

In our research we aimed to test a managerial approach for the fuzzy front end (FFE) of innovation by creating controlled experiment/ business case in a breakthrough innovation development. The experiment was in the sport industry and covered all aspects of the customer discovery stage from ideation to prototyping followed by patent application. In the paper we describe and analyze mile stones, tasks, management challenges, decisions made to create the break through innovation, evaluate overall managerial efficiency that was at the considered FFE stage. We set managerial outcome of the FFE stage as a valid product concept in hand. In our paper we introduce hypothetical construct “Q-factor” that helps us in the experiment to distinguish quality of FFE outcomes. The experiment simulated for entrepreneur the FFE of innovation and put on his shoulders responsibility for the outcome of valid product concept. While developing managerial approach to reach the outcome there was a decision to look on product concept from the cognitive psychology and cognitive science point of view. This view helped us to develop the profile of a person whose projection (mental representation) of a new product could optimize for a manager or entrepreneur FFE activities. In the experiment this profile was tested to develop breakthrough innovation for swimmers. Following the managerial approach the product concept was created to help swimmers to feel/sense water. The working prototype was developed to estimate the product concept validity and value added effect for customers. Based on feedback from coachers and swimmers there were strong positive effect that gave high value for customers, and for the experiment – the valid product concept being developed by proposed managerial approach for the FFE. In conclusions there is a suggestion of managerial approach that was derived from experiment.

Keywords: concept development, concept testing, customer discovery, entrepreneurship, entrepreneurial management, idea generation, idea screening, startup management

Procedia PDF Downloads 445
27768 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 292
27767 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal

Authors: Pedro B. Antunes, Paulo J. Ramísio

Abstract:

Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.

Keywords: coastal zones, monitoring, road runoff pollution, salt deposition

Procedia PDF Downloads 239
27766 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
27765 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring

Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan

Abstract:

The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.

Keywords: remote sensing, GIS, metadata, integration, environmental analysis

Procedia PDF Downloads 120
27764 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 143
27763 A Copula-Based Approach for the Assessment of Severity of Illness and Probability of Mortality: An Exploratory Study Applied to Intensive Care Patients

Authors: Ainura Tursunalieva, Irene Hudson

Abstract:

Continuous improvement of both the quality and safety of health care is an important goal in Australia and internationally. The intensive care unit (ICU) receives patients with a wide variety of and severity of illnesses. Accurately identifying patients at risk of developing complications or dying is crucial to increasing healthcare efficiency. Thus, it is essential for clinicians and researchers to have a robust framework capable of evaluating the risk profile of a patient. ICU scoring systems provide such a framework. The Acute Physiology and Chronic Health Evaluation III and the Simplified Acute Physiology Score II are ICU scoring systems frequently used for assessing the severity of acute illness. These scoring systems collect multiple risk factors for each patient including physiological measurements then render the assessment outcomes of individual risk factors into a single numerical value. A higher score is related to a more severe patient condition. Furthermore, the Mortality Probability Model II uses logistic regression based on independent risk factors to predict a patient’s probability of mortality. An important overlooked limitation of SAPS II and MPM II is that they do not, to date, include interaction terms between a patient’s vital signs. This is a prominent oversight as it is likely there is an interplay among vital signs. The co-existence of certain conditions may pose a greater health risk than when these conditions exist independently. One barrier to including such interaction terms in predictive models is the dimensionality issue as it becomes difficult to use variable selection. We propose an innovative scoring system which takes into account a dependence structure among patient’s vital signs, such as systolic and diastolic blood pressures, heart rate, pulse interval, and peripheral oxygen saturation. Copulas will capture the dependence among normally distributed and skewed variables as some of the vital sign distributions are skewed. The estimated dependence parameter will then be incorporated into the traditional scoring systems to adjust the points allocated for the individual vital sign measurements. The same dependence parameter will also be used to create an alternative copula-based model for predicting a patient’s probability of mortality. The new copula-based approach will accommodate not only a patient’s trajectories of vital signs but also the joint dependence probabilities among the vital signs. We hypothesise that this approach will produce more stable assessments and lead to more time efficient and accurate predictions. We will use two data sets: (1) 250 ICU patients admitted once to the Chui Regional Hospital (Kyrgyzstan) and (2) 37 ICU patients’ agitation-sedation profiles collected by the Hunter Medical Research Institute (Australia). Both the traditional scoring approach and our copula-based approach will be evaluated using the Brier score to indicate overall model performance, the concordance (or c) statistic to indicate the discriminative ability (or area under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for calibration. We will also report discrimination and calibration values and establish visualization of the copulas and high dimensional regions of risk interrelating two or three vital signs in so-called higher dimensional ROCs.

Keywords: copula, intensive unit scoring system, ROC curves, vital sign dependence

Procedia PDF Downloads 152
27762 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 30
27761 Challenge Response-Based Authentication for a Mobile Voting System

Authors: Tohari Ahmad, Hudan Studiawan, Iwang Aryadinata, Royyana M. Ijtihadie, Waskitho Wibisono

Abstract:

A manual voting system has been implemented worldwide. It has some weaknesses which may decrease the legitimacy of the voting result. An electronic voting system is introduced to minimize this weakness. It has been able to provide a better result, in terms of the total time taken in the voting process and accuracy. Nevertheless, people may be reluctant to go to the polling location because of some reasons, such as distance and time. In order to solve this problem, mobile voting is implemented by utilizing mobile devices. There are many mobile voting architectures available. Overall, authenticity of the users is the common problem of all voting systems. There must be a mechanism which can verify the users’ authenticity such that only verified users can give their vote once; others cannot vote. In this paper, a challenge response-based authentication is proposed by utilizing properties of the users, for example, something they have and know. In terms of speed, the proposed system provides good result, in addition to other capabilities offered by the system.

Keywords: authentication, data protection, mobile voting, security

Procedia PDF Downloads 419
27760 Prevalance and Factors Associated with Domestic Violence among Preganant Women in Southwest Ethiopia

Authors: Bediru Abamecha

Abstract:

Background: Domestic violence is a global problem that occurs regardless of culture, ethnicity or socio-economic class. It is known to be responsible for numerous hospital visits undertaken by women. Violence on pregnant women is a health and social problem that poses particular risks to the woman and her unborn child. Objective: The Objective of this study will be to assess prevalence of domestic violence and its correalates among pregnant women in Manna Woreda of Jimma Zone. Methods: Simple Random Sampling technique will be used to select 12 kebeles (48% of the study area) and Systematic Sampling will be used to reach to the house hold in selected kebeles in manna woreda of Jimma zone, south west Ethiopia from february 15-25, 2011. An in-depth interview will be conducted on Women affairs, police office and Nurses working and minimum of 4FGD with 6-8 members on pregnant women and selected male from the community. SPSS version 16.0 will be used to enter, clean and analyze the data. Descriptive statistics such as mean or median for continuous variables and percent for categorical variables will be made. Bivariate analysis will be used to check the association between independent variables and domestic violence. Variables found to have association with domestic violence will be entered to multiple logistic regressions for controlling the possible effect of confounders and finally the variables which had significance association will be identified on basis of OR, with 95% CI. All statistical significance will be considered at p<0.05. The qualitative data will be summarized manually and thematic analysis will be performed and finally both will be triangulated.

Keywords: ante natal care, ethiopian demographic and health survey, domestic violence, statistical package for social science

Procedia PDF Downloads 518
27759 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
27758 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: big data, machine learning, ontology model, urban data model

Procedia PDF Downloads 418
27757 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 49
27756 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake

Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama

Abstract:

The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.

Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake

Procedia PDF Downloads 164