Search results for: restructuring digital factory model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19272

Search results for: restructuring digital factory model

16992 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.

Authors: Georgia Pozoukidou

Abstract:

TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.

Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations

Procedia PDF Downloads 293
16991 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 109
16990 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card

Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi

Abstract:

In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.

Keywords: blockchain, decentralized system, fingerprint impression, identity management, iris scan

Procedia PDF Downloads 129
16989 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 101
16988 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
16987 Measuring Energy Efficiency Performance of Mena Countries

Authors: Azam Mohammadbagheri, Bahram Fathi

Abstract:

DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.

Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model

Procedia PDF Downloads 687
16986 Impact of Blended Learning in Interior Architecture Programs in Academia: A Case Study of Arcora Garage Academy from Turkey

Authors: Arzu Firlarer, Duygu Gocmen, Gokhan Uysal

Abstract:

There is currently a growing trend among universities towards blended learning. Blended learning is becoming increasingly important in higher education, with the aims of better accomplishing course learning objectives, meeting students’ changing needs and promoting effective learning both in a theoretical and practical dimension like interior architecture discipline. However, the practical dimension of the discipline cannot be supported in the university environment. During the undergraduate program, the practical training which is tried to be supported by two different internship programs cannot fully meet the requirements of the blended learning. The lack of education program frequently expressed by our graduates and employers is revealed in the practical knowledge and skills dimension of the profession. After a series of meetings for curriculum studies, interviews with the chambers of profession, meetings with interior architects, a gap between the theoretical and practical training modules is seen as a problem in all interior architecture departments. It is thought that this gap can be solved by a new education model which is formed by the cooperation of University-Industry in the concept of blended learning. In this context, it is considered that theoretical and applied knowledge accumulation can be provided by the creation of industry-supported educational environments at the university. In the application process of the Interior Architecture discipline, the use of materials and technical competence will only be possible with the cooperation of industry and participation of students in the production/manufacture processes as observers and practitioners. Wood manufacturing is an important part of interior architecture applications. Wood productions is a sustainable structural process where production details, material knowledge, and process details can be observed in the most effective way. From this point of view, after theoretical training about wooden materials, wood applications and production processes are given to the students, practical training for production/manufacture planning is supported by active participation and observation in the processes. With this blended model, we aimed to develop a training model in which theoretical and practical knowledge related to the production of wood works will be conveyed in a meaningful, lasting way by means of university-industry cooperation. The project is carried out in Ankara with Arcora Architecture and Furniture Company and Başkent University Department of Interior Design where university-industry cooperation is realized. Within the scope of the project, every week the video of that week’s lecture is recorded and prepared to be disseminated by digital medias such as Udemy. In this sense, the program is not only developed by the project participants, but also other institutions and people who are trained and practiced in the field of design. Both academicians from University and at least 15-year experienced craftsmen in the wood metal and dye sectors are preparing new training reference documents for interior architecture undergraduate programs. These reference documents will be a model for other Interior Architecture departments of the universities and will be used for creating an online education module.

Keywords: blended learning, interior design, sustainable training, effective learning.

Procedia PDF Downloads 136
16985 Factors of Social Network Platform Usage and Privacy Risk: A Unified Theory of Acceptance and Use of Technology2 Model

Authors: Wang Xue, Fan Liwei

Abstract:

The trust and use of social network platforms by users are instrumental factors that contribute to the platform’s sustainable development. Studying the influential factors of the use of social network platforms is beneficial for developing and maintaining a large user base. This study constructed an extended unified theory of acceptance and use of technology (UTAUT2) moderating model with perceived privacy risks to analyze the factors affecting the trust and use of social network platforms. 444 participants completed our 35 surveys, and we verified the survey results by structural equation model. Empirical results reveal the influencing factors that affect the trust and use of social network platforms, and the extended UTAUT2 model with perceived privacy risks increases the applicability of UTAUT2 in social network scenarios. Social networking platforms can increase their use rate by increasing the economics, functionality, entertainment, and privacy security of the platform.

Keywords: perceived privacy risk, social network, trust, use, UTAUT2 model

Procedia PDF Downloads 99
16984 Circadian Disruption in Polycystic Ovary Syndrome Model Rats

Authors: Fangfang Wang, Fan Qu

Abstract:

Polycystic ovary syndrome (PCOS), the most common endocrinopathy among women of reproductive age, is characterized by ovarian dysfunction, hyperandrogenism and reduced fecundity. The aim of this study is to investigate whether the circadian disruption is involved in pathogenesis of PCOS in androgen-induced animal model. We established a rat model of PCOS using single subcutaneous injection with testosterone propionate on the ninth day after birth, and confirmed their PCOS-like phenotypes with vaginal smears, ovarian hematoxylin and eosin (HE) staining and serum androgen measurement. The control group rats received the vehicle only. Gene expression was detected by real-time quantitative PCR. (1) Compared with control group, PCOS model rats of 10-week group showed persistently keratinized vaginal cells, while all the control rats showed at least two consecutive estrous cycles. (2) Ovarian HE staining and histological examination showed that PCOS model rats of 10-week group presented many cystic follicles with decreased numbers of granulosa cells and corpora lutea in their ovaries, while the control rats had follicles with normal layers of granulosa cells at various stages of development and several generations of corpora lutea. (3) In the 10-week group, serum free androgen index was notably higher in PCOS model rats than controls. (4) Disturbed mRNA expression patterns of core clock genes were found in ovaries of PCOS model rats of 10-week group. Abnormal expression of key genes associated with circadian rhythm in ovary may be one of the mechanisms for ovarian dysfunction in PCOS model rats induced by androgen.

Keywords: polycystic ovary syndrome, androgen, animal model, circadian disruption

Procedia PDF Downloads 230
16983 A Study on Human Musculoskeletal Model for Cycle Fitting: Comparison with EMG

Authors: Yoon- Ho Shin, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Joo-Hack Lee, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack

Abstract:

It is difficult to study the effect of various variables on cycle fitting through actual experiment. To overcome such difficulty, the forward dynamics of a musculoskeletal model was applied to cycle fitting in this study. The measured EMG data were compared with the muscle activities of the musculoskeletal model through forward dynamics. EMG data were measured from five cyclists who do not have musculoskeletal diseases during three minutes pedaling with a constant load (150 W) and cadence (90 RPM). The muscles used for the analysis were the Vastus Lateralis (VL), Tibialis Anterior (TA), Bicep Femoris (BF), and Gastrocnemius Medial (GM). Person’s correlation coefficients of the muscle activity patterns, the peak timing of the maximum muscle activities, and the total muscle activities were calculated and compared. BIKE3D model of AnyBody (Anybodytech, Denmark) was used for the musculoskeletal model simulation. The comparisons of the actual experiments with the simulation results showed significant correlations in the muscle activity patterns (VL: 0.789, TA: 0.503, BF: 0.468, GM: 0.670). The peak timings of the maximum muscle activities were distributed at particular phases. The total muscle activities were compared with the normalized muscle activities, and the comparison showed about 10% difference in the VL (+10%), TA (+9.7%), and BF (+10%), excluding the GM (+29.4%). Thus, it can be concluded that muscle activities of model & experiment showed similar results. The results of this study indicated that it was possible to apply the simulation of further improved musculoskeletal model to cycle fitting.

Keywords: musculoskeletal modeling, EMG, cycle fitting, simulation

Procedia PDF Downloads 568
16982 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects

Authors: Preeda Sansakorn, Min An

Abstract:

In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.

Keywords: safety risk assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects

Procedia PDF Downloads 492
16981 The Supply Chain Operation Reference Model Adaptation in the Developing Countries: An Empirical Study on the Egyptian Automotive Sector

Authors: Alaa Osman, Sara Elgazzar, Breksal Elmiligy

Abstract:

The Supply Chain Operation Reference (SCOR) model is considered one of the most widely implemented supply chain performance measurement systems (SCPMSs). Several studies have been proposed on the SCOR model adaptation in developed countries context; while there is a limited availability of previous work on the SCPMSs application generally and the SCOR model specifically in developing nations. This paper presents a research agenda on the SCOR model adaptation in the developing countries. It aims at investigating the challenges of adapting the SCOR model to manage and measure supply chain performance in developing countries. The research will exemplify the system in the Egyptian automotive sector to gain a comprehensive understanding of how the application of the SCOR model can affect the performance of automotive companies in Egypt, with a necessary understanding of challenges and obstacles faced the adaptation of the model in the Egyptian supply chain context. An empirical study was conducted on the Egyptian automotive sector in three companies considering three different classes: BMW, Hyundai and Brilliance. First, in-depth interviews were carried out to gain an insight into the implementation and the relevance of the concepts of supply chain management and performance measurement in the Egyptian automotive industry. Then, a formal survey was designed based on the SCOR model five main processes (plan, source, make, deliver and return) and best practices to investigate the challenges and obstacles faced the adaptation of the SCOR model in the Egyptian automotive supply chain. Finally, based on the survey results, the appropriate best practices for each process were identified in order to overcome the SCOR model adaptation challenges. The results showed that the implementation of the SCOR model faced different challenges and unavailability of the required enablers. The survey highlighted the low integration of end-to-end supply chain, lacks commitment for the innovative ideas and technologies, financial constraints and lack of practical training and support as the main challenges faced the adaptation of the SCOR model in the Egyptian automotive supply chain. The research provides an original contribution to knowledge by proposing a procedure to identify challenges encountered during the process of SCOR model adoption which can pave a way for further research in the area of SCPMSs adaptation, particularly in the developing countries. The research can help managers and organizations to identify obstacles and difficulties of the SCOR model adaptation, subsequently this can facilitate measuring the improved performance or changes in the organizational performance.

Keywords: automotive sector, developing countries, SCOR model, supply chain performance

Procedia PDF Downloads 374
16980 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options

Authors: Wajih Abbassi, Zouhaier Ben Khelifa

Abstract:

The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.

Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options

Procedia PDF Downloads 429
16979 Chemometric Determination of the Geographical Origin of Milk Samples in Malaysia

Authors: Shima Behkami, Nor Shahirul Umirah Idris, Sharifuddin Md. Zain, Kah Hin Low, Mehrdad Gholami, Nima A. Behkami, Ahmad Firdaus Kamaruddin

Abstract:

In this work, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Isotopic Ratio Mass Spectrometry (IRMS) and Ultrasound Milko Tester were used to study milk samples obtained from various geographical locations in Malaysia. ICP-MS was used to determine the concentration of trace elements in milk, water and soil samples obtained from seven dairy farms at different geographical locations in peninsular Malaysia. IRMS was used to analyze the milk samples for isotopic ratios of δ13C, 15N and 18O. Nutritional parameters in the milk samples were determined using an ultrasound milko tester. Data obtained from these measurements were evaluated by Principal Component Analysis (PCA) and Hierarchical Analysis (HA) as a preliminary step in determining geographical origin of these milk samples. It is observed that the isotopic ratios and a number of the nutritional parameters are responsible for the discrimination of the samples. It was also observed that it is possible to determine the geographical origin of these milk samples solely by the isotopic ratios of δ13C, 15N and 18O. The accuracy of the geographical discrimination is demonstrated when several milk samples from a milk factory taken from one of the regions under study were appropriately assigned to the correct PCA cluster.

Keywords: inductively coupled plasma mass spectroscopy ICP-MS, isotope ratio mass spectroscopy IRMS, ultrasound, principal component analysis, hierarchical analysis, geographical origin, milk

Procedia PDF Downloads 370
16978 Radiative Reactions Analysis at the Range of Astrophysical Energies

Authors: A. Amar

Abstract:

Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.

Keywords: elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction

Procedia PDF Downloads 211
16977 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery

Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi

Abstract:

we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.

Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image

Procedia PDF Downloads 142
16976 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation

Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati

Abstract:

Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.

Keywords: grid structure, pump intake, simulation, vibration, vortex

Procedia PDF Downloads 175
16975 Quantification of Leachate Potential of the Quezon City Controlled Dumping Facility Using Help Model

Authors: Paul Kenneth D. Luzon, Maria Antonia N. Tanchuling

Abstract:

The Quezon City Controlled Dumping facility also known as Payatas produces leachate which can contaminate soil and water environment in the area. The goal of this study is to quantify the leachate produced by the QCCDF using the Hydrologic Evaluation of Landfill Performance (HELP) model. Results could be used as input for groundwater contaminant transport studies. The HELP model is based on a simple water budget and is an essential “model requirement” used by the US Environmental Protection Agency (EPA). Annual waste profile of the QCCDF was calculated. Based on topographical maps and estimation of settlement due to overburden pressure and degradation, a total of 10M m^3 of waste is contained in the landfill. The input necessary for the HELP model are weather data, soil properties, and landfill design. Results showed that from 1988 to 2011, an average of 50% of the total precipitation percolates through the bottom layer. Validation of the results is still needed due to the assumptions made in the study. The decrease in porosity of the top soil cover showed the best mitigation for minimizing percolation rate. This study concludes that there is a need for better leachate management system in the QCCDF.

Keywords: help model, landfill, payatas trash slide, quezon city controlled dumping facility

Procedia PDF Downloads 291
16974 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm

Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri

Abstract:

This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.

Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction

Procedia PDF Downloads 31
16973 Knowledge Transfer through Entrepreneurship: From Research at the University to the Consolidation of a Spin-off Company

Authors: Milica Lilic, Marina Rosales Martínez

Abstract:

Academic research cannot be oblivious to social problems and needs, so projects that have the capacity for transformation and impact should have the opportunity to go beyond the University circles and bring benefit to society. Apart from patents and R&D research contracts, this opportunity can be achieved through entrepreneurship as one of the most direct tools to turn knowledge into a tangible product. Thus, as an example of good practices, it is intended to analyze the case of an institutional entrepreneurship program carried out at the University of Seville, aimed at researchers interested in assessing the business opportunity of their research and expanding their knowledge on procedures for the commercialization of technologies used at academic projects. The program is based on three pillars: training, teamwork sessions and networking. The training includes aspects such as product-client fit, technical-scientific and economic-financial feasibility of a spin-off, institutional organization and decision making, public and private fundraising, and making the spin-off visible in the business world (social networks, key contacts, corporate image and ethical principles). On the other hand, the teamwork sessions are guided by a mentor and aimed at identifying research results with potential, clarifying financial needs and procedures to obtain the necessary resources for the consolidation of the spin-off. This part of the program is considered to be crucial in order for the participants to convert their academic findings into a business model. Finally, the networking part is oriented to workshops about the digital transformation of a project, the accurate communication of the product or service a spin-off offers to society and the development of transferable skills necessary for managing a business. This blended program results in the final stage where each team, through an elevator pitch format, presents their research turned into a business model to an experienced jury. The awarded teams get a starting capital for their enterprise and enjoy the opportunity of formally consolidating their spin-off company at the University. Studying the results of the program, it has been shown that many researchers have basic or no knowledge of entrepreneurship skills and different ways to turn their research results into a business model with a direct impact on society. Therefore, the described program has been used as an example to highlight the importance of knowledge transfer at the University and the role that this institution should have in providing the tools to promote entrepreneurship within it. Keeping in mind that the University is defined by three main activities (teaching, research and knowledge transfer), it is safe to conclude that the latter, and the entrepreneurship as an expression of it, is crucial in order for the other two to comply with their purpose.

Keywords: good practice, knowledge transfer, a spin-off company, university

Procedia PDF Downloads 146
16972 The Influence of Absorptive Capacity on Process Innovation: An Exploratory Study in Seven Leading and Emerging Countries

Authors: Raphael M. Rettig, Tessa C. Flatten

Abstract:

This empirical study answer calls for research on Absorptive Capacity and Process Innovation. Due to the fourth industrial revolution, manufacturing companies face the biggest disruption of their production processes since the rise of advanced manufacturing technologies in the last century. Therefore, process innovation will become a critical task to master in the future for many manufacturing firms around the world. The general ability of organizations to acquire, assimilate, transform, and exploit external knowledge, known as Absorptive Capacity, was proven to positively influence product innovation and is already conceptually associated with process innovation. The presented research provides empirical evidence for this influence. The findings are based on an empirical analysis of 732 companies from seven leading and emerging countries: Brazil, China, France, Germany, India, Japan, and the United States of America. The answers to the survey were collected in February and March 2018 and addressed senior- and top-level management with a focus on operations departments. The statistical analysis reveals the positive influence of potential and Realized Absorptive Capacity on successful process innovation taking the implementation of new digital manufacturing processes as an example. Potential Absorptive Capacity covering the acquisition and assimilation capabilities of an organization showed a significant positive influence (β = .304, p < .05) on digital manufacturing implementation success and therefore on process innovation. Realized Absorptive Capacity proved to have significant positive influence on process innovation as well (β = .461, p < .01). The presented study builds on prior conceptual work in the field of Absorptive Capacity and process innovation and contributes theoretically to ongoing research in two dimensions. First, the already conceptually associated influence of Absorptive Capacity on process innovation is backed by empirical evidence in a broad international context. Second, since Absorptive Capacity was measured with a focus on new product development, prior empirical research on Absorptive Capacity was tailored to the research and development departments of organizations. The results of this study highlight the importance of Absorptive Capacity as a capability in mechanical engineering and operations departments of organizations. The findings give managers an indication of the importance of implementing new innovative processes into their production system and fostering the right mindset of employees to identify new external knowledge. Through the ability to transform and exploit external knowledge, own production processes can be innovated successfully and therefore have a positive influence on firm performance and the competitive position of their organizations.

Keywords: absorptive capacity, digital manufacturing, dynamic capabilities, process innovation

Procedia PDF Downloads 144
16971 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses

Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid

Abstract:

Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.

Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss

Procedia PDF Downloads 280
16970 Development of a Value Evaluation Model of Highway Box-Girder Bridge

Authors: Hao Hsi Tseng

Abstract:

Taiwan’s infrastructure is gradually deteriorating, while resources for maintenance and replacement are increasingly limited, raising the urgent need for methods for maintaining existing infrastructure within constrained budgets. Infrastructure value evaluation is used to enhance the efficiency of infrastructure maintenance work, allowing administrators to quickly assess the maintenance needs and performance by observing variation in infrastructure value. This research establishes a value evaluation model for Taiwan’s highway box girder bridges. The operating mechanism and process of the model are illustrated in a practical case.

Keywords: box girder bridge, deterioration, infrastructure, maintenance, value evaluation

Procedia PDF Downloads 190
16969 Developing an Information Model of Manufacturing Process for Sustainability

Authors: Jae Hyun Lee

Abstract:

Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes.

Keywords: process information model, sustainability, OWL, manufacturing

Procedia PDF Downloads 430
16968 Development and Testing of Health Literacy Scales for Chinese Primary and Secondary School Students

Authors: Jiayue Guo, Lili You

Abstract:

Background: Children and adolescent health are crucial for both personal well-being and the nation's future health landscape. Health Literacy (HL) is important in enabling adolescents to self-manage their health, a fundamental step towards health empowerment. However, there are limited tools for assessing HL among elementary and junior high school students. This study aims to construct and validate a test-based HL scale for Chinese students, offering a scientific reference for cross-cultural HL tool development. Methods: We conducted a cross-sectional online survey. Participants were recruited from a stratified cluster random sampling method, a total of 4189 Chinese in-school primary and secondary students. The development of the scale was completed by defining the concept of HL, establishing the item indicator system, screening items (7 health content dimensions), and evaluating reliability and validity. Delphi method expert consultation was used to screen items, the Rasch model was conducted for quality analysis, and Cronbach’s alpha coefficient was used to examine the internal consistency. Results: We developed four versions of the HL scale, each with a total score of 100, encompassing seven key health areas: hygiene, nutrition, physical activity, mental health, disease prevention, safety awareness, and digital health literacy. Each version measures four dimensions of health competencies: knowledge, skills, motivation, and behavior. After the second round of expert consultation, the average importance score of each item by experts is 4.5–5.0, and the coefficient of variation is 0.000–0.174. The knowledge and skills dimensions are judgment-based and multiple-choice questions, with the Rasch model confirming unidimensionality at a 5.7% residual variance. The behavioral and motivational dimensions, measured with scale-type items, demonstrated internal consistency via Cronbach's alpha and strong inter-item correlation with KMO values of 0.924 and 0.787, respectively. Bartlett's test of sphericity, with p-values <0.001, further substantiates the scale's reliability. Conclusions: The new test-based scale, designed to evaluate competencies within a multifaceted framework, aligns with current international adolescent literacy theories and China's health education policies, focusing not only on knowledge acquisition but also on the application of health-related thinking and behaviors. The scale can be used as a comprehensive tool for HL evaluation and a reference for other countries.

Keywords: adolescent health, Chinese, health literacy, rasch model, scale development

Procedia PDF Downloads 29
16967 Automatic Slider Design in Injection Moldings

Authors: Alan C. Lin, Tran Anh Son

Abstract:

This study proposes an approach to determine the undercut regions and their releasing directions for slider design of complex parts represented by the file format of STL (STereoLithography). In order to delineate the border of undercut regions, orthogonal cutting planes are firstly employed to automatically find the inner loops of a part model. To discover the facets belonging to undercut regions, attributes are then assigned to the facets of the part model based on the topological relationship of adjacent facets of each inner loop. After that, the undercut regions are separated from other facets in the model. Through the recognized facets of the undercut regions, the concept of 'visibility map (V-map)' is further applied to determine feasible releasing directions for each of the undercut regions. The undercut regions having the same releasing direction are finally grouped to form a slider in the injection mold.

Keywords: solid model, STL data, injection mold design, visibility map

Procedia PDF Downloads 395
16966 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 223
16965 Numerical Simulation of Kangimi Reservoir Sedimentation, Kaduna State, Nigeria

Authors: Abdurrasheed Sa'id, Abubakar Isma'il, Waheed Alayande

Abstract:

This study focused on carrying out numerical simulations of Kangimi reservoir sedimentation by reviewing different numerical sediment transport models, and GSTARS3 was selected. The model was developed using the 1977 data. It was calibrated by simulating the 2012 profile and sediment deposition and compared with 2012 hydrographic survey results of NWRI. The model was validated by simulating the 2016 deposition and compared the results with NWRI estimates. Also, the performance of the proposed model was tested using statistical parameters such as MSE (Mean Square Error), MAPE (Mean Average Percentage Error) and R2 (Coefficient of determination) with values of 1.32m, 0.17% and 0.914 respectively which shows strong agreement. After the calibration, validation and performance testing the model was used to simulate the 2032 and 2062 profiles and deposition. The results showed that by 2032 the reservoir will be silted by 25.34MCM or 43.3% of the design capacity and 60.7% of the capacity by the year 2062. A number of sedimentation mitigation measures were recommended.

Keywords: NWRI- national water resources institute, sedimentation, GSTARS3, model

Procedia PDF Downloads 220
16964 Progress of Legislation in Post-Colonial, Post-Communist and Socialist Countries for the Intellectual Property Protection of the Autonomous Output of Artificial Intelligence

Authors: Ammar Younas

Abstract:

This paper is an attempt to explore the legal progression in procedural laws related to “intellectual property protection for the autonomous output of artificial intelligence” in Post-Colonial, Post-Communist and Socialist Countries. An in-depth study of legal progression in Pakistan (Common Law), Uzbekistan (Post-Soviet Civil Law) and China (Socialist Law) has been conducted. A holistic attempt has been made to explore that how the ideological context of the legal systems can impact, not only on substantive components but on the procedural components of the formal laws related to IP Protection of autonomous output of Artificial Intelligence. Moreover, we have tried to shed a light on the prospective IP laws and AI Policy in the countries, which are planning to incorporate the concept of “Digital Personality” in their legal systems. This paper will also address the question: “How far IP of autonomous output of AI can be protected with the introduction of “Non-Human Legal Personality” in legislation?” By using the examples of China, Pakistan and Uzbekistan, a case has been built to highlight the legal progression in General Provisions of Civil Law, Artificial Intelligence Policy of the country and Intellectual Property laws. We have used a range of multi-disciplinary concepts and examined them on the bases of three criteria: accuracy of legal/philosophical presumption, applying to the real time situations and testing on rational falsification tests. It has been observed that the procedural laws are designed in a way that they can be seen correlating with the ideological contexts of these countries.

Keywords: intellectual property, artificial intelligence, digital personality, legal progression

Procedia PDF Downloads 118
16963 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

The research study aimed to (1) compare the critical thinking of the teacher students of Suan Sunandha Rajabhat University before and after applying Miller’s Model learning activities and (2) investigate the students’ opinions towards Miller’s Model learning activities for improving the critical thinking. The participants of this study were purposively selected. They were 3 groups of teacher students: (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: critical thinking, Miller’s model, opinions, pre-service teachers

Procedia PDF Downloads 477