Search results for: nested factor model
18585 Proposals for Continuous Quality Improvement of Public Transportation Federal District Using SERVQUAL
Authors: Rodrigo Guimarães Santos
Abstract:
The quality of public transport services has been considered as a critical factor by their users and also by users of individual transport. Thus, this dissertation aims to adapt a model that assesses the quality of public transport and determines its level of service based on the views of its users. The methodology is widely used by marketers and allows measuring the quality of services by assessing the perceptions and expectations of users. The adapted SERVQUAL was tested with users of public transport service users and car in Brasília-DF, city of Brazil. This research involved 241 questionnaires answered by people living in the various administrative regions of Brasília-DF. The analysis of the determinants pointed out that the quality of the public transport service offered in the city is low and users of public transport and cars have a high degree of expectations for improvement in all tested determinants. This method enabled the identification of the most critical determinants and those needing strategic actions for continuous improvement of quality. Adapting the SERVQUAL for a public transport service was satisfactory and demonstrated applicability to internal and external services, including measuring the public transport services in other cities with the opinion of the users.Keywords: transportation services, quality services, servqual scale and marketing services
Procedia PDF Downloads 38818584 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 19618583 Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility
Authors: Prasenjit Singha, Ajay Kumar Shukla
Abstract:
To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries.Keywords: desulphurization, degassing, factsage, reactor
Procedia PDF Downloads 21718582 IAM Smart – A Sustainable Way to Reduce Plastics in Organizations
Authors: Krithika Kumaragurubaran, Mannu Thareja
Abstract:
Saving our planet Earth is the responsibility of every human being. Global warming and carbon emissions are killing our planet. We must adopt sustainable practices to give our future generations an equal opportunity to enjoy this planet Earth, our home. One of the most used unsustainable materials is plastic. Plastics are used everywhere. They are cheap, durable, strong, waterproof, non-corrosive with a long life. So longthat it makes plastic unsustainable. With this paper, we want to bring awareness on the usage of plastic in the organizations and how to reduce it by adopting sustainable practices powered by technology. We have taken a case study on the usage of photo ID cards, which are commonly used for authentication and authorization. These ID cards are used by employees or visitors to get access to the restricted areas inside the office buildings. The scale of these plastic cards can be in thousands for a bigger organization. This paper proposes smart alternatives to Identity and Access Management (IAM) which could replace the traditional method of using plastic ID cards. Further, the proposed solution is secure with multi-factor authentication (MFA), cost effective as there is no need to manage the supply chain of ID cards, provides instant IAM with self-service, and has the convenience of smart phone. Smart IAM is not only user friendly however also environment friendly.Keywords: sustainability, reduce plastic, IAM (Identity and Access Management), multi-factor authentication
Procedia PDF Downloads 11018581 Media Usage, Citizenship Norms, and Political Participation of Transition to Democracy in Indonesia
Authors: Najmuddin Najmuddin
Abstract:
The purpose of this study is to determine whether media usage and change of citizenship norms influence political participation. The focus of this study is to examine citizenship norms in the context of the development of information, and communication technology and how it will impact political participation in the context of Indonesia's transition to democracy. The study use survey method. The main theoretical framework is media and political participation. The results of this study reveal that gender, age and educational background of the respondents did not influence significantly media usage and citizenship norms. The Results also show that educational background is not a factor that distinguishes media usage but it becomes differentiating factor in citizenship norms. The results further show that the media usage has a significant correlation with citizenship norms and citizenship norms has a significant relationship with political participation. In addition, media usage and citizenship norms impact significantly to political participation. The sub-dimensions of citizenship norms (compliance, duty, and engaged citizen) provides a significant contribution to the sub-dimensions of political participation (traditional political participation, modern political participation, civic political participation). Based on the findings it can be concluded that the political euphoria in the era of transition to democracy has changed pattern media usage and citizenship norms of among the young generation.Keywords: media, citizenship, norms, political, participation, democracy
Procedia PDF Downloads 36418580 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia
Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja
Abstract:
Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production
Procedia PDF Downloads 6918579 The Relationship of Entrepreneurial Competencies and Business Success of Malaysian SMEs: The Mediating Role of Innovation and Brand Equity
Authors: Azmi Umar, Rohana Ngah
Abstract:
The aim of this paper is to examine the relationship of entrepreneurial competencies on business success in the context of Malaysian SMEs. In the recent study, when the business environment is hostile and dynamic, the entrepreneurial competencies are identified as the most important factor in business success. Entrepreneurial competencies are also connected directly to business performance. Beside entrepreneurial competencies, the entrepreneurs should also be competent to create an innovation and brand equity for business growth. The innovation and brand equity contributed to competitive advantages that lead to business growth and success. This paper adopts the Resource Based Theory (RBT) which emphasize that entrepreneurial competencies, innovation and brand equity are valuable and intangible resources that lead towards the success of business; and Brand Equity Creation Process Model (BECPM). A quantitative methodology was used to collect the data from owner/managers of Malaysian SMEs. Data were analyzed by using SPSS and SEM software. Hence, findings of the present study would be essential for owner/managers and strategy makers to enhance the entrepreneurial competencies; innovation and brand equity of SMEs in Malaysia towards global competition.Keywords: entrepreneurial competencies, innovation, brand equity, business success, SMEs
Procedia PDF Downloads 38318578 Changes in Cognition of Elderly People: A Longitudinal Study in Kanchanaburi Province, Thailand
Authors: Natchaphon Auampradit, Patama Vapattanawong, Sureeporn Punpuing, Malee Sunpuwan, Tawanchai Jirapramukpitak
Abstract:
Longitudinal studies related to cognitive impairment in elderly are necessary for health promotion and development. The purposes of this study were (1) to examine changes in cognition of elderly over time and (2) to examine the impacts of changes in social determinants of health (SDH) toward changes in cognition of elderly by using the secondary data derived from the Kanchanaburi Demographic Surveillance System (KDSS) by the Institute for Population and Social Research (IPSR) which contained longitudinal data on individuals, households, and villages. Two selected projects included the Health and Social Support for Elderly in KDSS in 2007 and the Population, Economic, Social, Cultural, and Long-term Care Surveillance for Thai Elderly People’s Health Promotion in 2011. The samples were 586 elderly participated in both projects. SDH included living arrangement, social relationships with children, relatives, and friends, household asset-based wealth index, household monthly income, loans for livings, loans for investment, and working status. Cognitive impairment was measured by category fluency and delayed recall. This study employed Generalized Estimating Equation (GEE) model to investigate changes in cognition by taking SDH and other variables such as age, gender, marital status, education, and depression into the model. The unstructured correlation structure was selected to use for analysis. The results revealed that 24 percent of elderly had cognitive impairment at baseline. About 13 percent of elderly still had cognitive impairment during 2007 until 2011. About 21 percent and 11 percent of elderly had cognitive decline and cognitive improvement, respectively. The cross-sectional analysis showed that household asset-based wealth index, social relationship with friends, working status, age, marital status, education, and depression were significantly associated with cognitive impairment. The GEE model revealed longitudinal effects of household asset-based wealth index and working status against cognition during 2007 until 2011. There was no longitudinal effect of social conditions against cognition. Elderly living with richer household asset-based wealth index, still being employed, and being younger were less likely to have cognitive impairment. The results strongly suggested that poorer household asset-based wealth index and being unemployed were served as a risk factor for cognitive impairment over time. Increasing age was still the major risk for cognitive impairment as well.Keywords: changes in cognition, cognitive impairment, elderly, KDSS, longitudinal study
Procedia PDF Downloads 14118577 Flexible Capacitive Sensors Based on Paper Sheets
Authors: Mojtaba Farzaneh, Majid Baghaei Nejad
Abstract:
This article proposes a new Flexible Capacitive Tactile Sensors based on paper sheets. This method combines the parameters of sensor's material and dielectric, and forms a new model of flexible capacitive sensors. The present article tries to present a practical explanation of this method's application and advantages. With the use of this new method, it is possible to make a more flexibility and accurate sensor in comparison with the current models. To assess the performance of this model, the common capacitive sensor is simulated and the proposed model of this article and one of the existing models are assessed. The results of this article indicate that the proposed model of this article can enhance the speed and accuracy of tactile sensor and has less error in comparison with the current models. Based on the results of this study, it can be claimed that in comparison with the current models, the proposed model of this article is capable of representing more flexibility and more accurate output parameters for touching the sensor, especially in abnormal situations and uneven surfaces, and increases accuracy and practicality.Keywords: capacitive sensor, paper sheets, flexible, tactile, uneven
Procedia PDF Downloads 35318576 Creative Peace Diplomacy Model by the Perspective of Dialogue Management for International Relations
Authors: Bilgehan Gültekin, Tuba Gültekin
Abstract:
Peace diplomacy is the most important international tool to keep peace all over the world. The study titled “peace diplomacy for international relations” is consist of three part. In the first part, peace diplomacy is going to be introduced as a tool of peace communication and peace management. And, in this part, peace communication will be explained by international communication perspective. In the second part of the study,public relations events and communication campaigns will be developed originally for peace diplomacy. In this part, it is aimed original public communication dialogue management tools for peace diplomacy. the aim of the final part of the study, is to produce original public communication model for international relations. The model includes peace modules, peace management projects, original dialogue procedures and protocols, dialogue education, dialogue management strategies, peace actors, communication models, peace team management and public diplomacy steps. The creative part of the study aims to develop a model used for international relations for all countries. Creative Peace Diplomacy Model will be developed in the case of Turkey-Turkey-France and Turkey-Greece relations. So, communication and public relations events and campaigns are going to be developed as original for only this study.Keywords: peace diplomacy, public communication model, dialogue management, international relations
Procedia PDF Downloads 54118575 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm
Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan
Abstract:
With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization
Procedia PDF Downloads 32418574 The Six 'P' Model: Principles of Inclusive Practice for Inclusion Coaches
Authors: Tiffany Gallagher, Sheila Bennett
Abstract:
Based on data from a larger study, this research is based in a small school district in Ontario, Canada, that has made a transition from self-contained classes for students with exceptionalities to inclusive classroom placements for all students with their age-appropriate peers. The school board aided this transition by hiring Inclusion Coaches with a background in special education to work alongside teachers as partners and inform their inclusive practice. Based on qualitative data from four focus groups conducted with Inclusion Coaches, as well as four blog-style reflections collected at various points over two years, six principles of inclusive practice were identified for coaches. The six principles form a model during transition: pre-requisite, process, precipice, promotion, proof, and promise. These principles are encapsulated in a visual model of a spiraling staircase displaying the conditions that exist prior to coaching, during coaching interactions and considerations for the sustainability of coaching. These six principles are re-iterative and should be re-visited each time a coaching interaction is initiated. Exploring inclusion coaching as a model emulates coaching in other contexts and allows us to examine an established process through a new lens. This research becomes increasingly important as more school boards transition toward inclusive classrooms, The Six ‘P’ Model: Principles of Inclusive Practice for Inclusion Coaches allows for a unique look into a scaffolding model of building educator capacity in an inclusive setting.Keywords: capacity building, coaching, inclusion, special education
Procedia PDF Downloads 24918573 Space Tourism Pricing Model Revolution from Time Independent Model to Time-Space Model
Authors: Kang Lin Peng
Abstract:
Space tourism emerged in 2001 and became famous in 2021, following the development of space technology. The space market is twisted because of the excess demand. Space tourism is currently rare and extremely expensive, with biased luxury product pricing, which is the seller’s market that consumers can not bargain with. Spaceship companies such as Virgin Galactic, Blue Origin, and Space X have been charged space tourism prices from 200 thousand to 55 million depending on various heights in space. There should be a reasonable price based on a fair basis. This study aims to derive a spacetime pricing model, which is different from the general pricing model on the earth’s surface. We apply general relativity theory to deduct the mathematical formula for the space tourism pricing model, which covers the traditional time-independent model. In the future, the price of space travel will be different from current flight travel when space travel is measured in lightyear units. The pricing of general commodities mainly considers the general equilibrium of supply and demand. The pricing model considers risks and returns with the dependent time variable as acceptable when commodities are on the earth’s surface, called flat spacetime. Current economic theories based on the independent time scale in the flat spacetime do not consider the curvature of spacetime. Current flight services flying the height of 6, 12, and 19 kilometers are charging with a pricing model that measures time coordinate independently. However, the emergence of space tourism is flying heights above 100 to 550 kilometers that have enlarged the spacetime curvature, which means tourists will escape from a zero curvature on the earth’s surface to the large curvature of space. Different spacetime spans should be considered in the pricing model of space travel to echo general relativity theory. Intuitively, this spacetime commodity needs to consider changing the spacetime curvature from the earth to space. We can assume the value of each spacetime curvature unit corresponding to the gradient change of each Ricci or energy-momentum tensor. Then we know how much to spend by integrating the spacetime from the earth to space. The concept is adding a price p component corresponding to the general relativity theory. The space travel pricing model degenerates into a time-independent model, which becomes a model of traditional commodity pricing. The contribution is that the deriving of the space tourism pricing model will be a breakthrough in philosophical and practical issues for space travel. The results of the space tourism pricing model extend the traditional time-independent flat spacetime mode. The pricing model embedded spacetime as the general relativity theory can better reflect the rationality and accuracy of space travel on the universal scale. The universal scale from independent-time scale to spacetime scale will bring a brand-new pricing concept for space traveling commodities. Fair and efficient spacetime economics will also bring to humans’ travel when we can travel in lightyear units in the future.Keywords: space tourism, spacetime pricing model, general relativity theory, spacetime curvature
Procedia PDF Downloads 12918572 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs
Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry
Abstract:
In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD
Procedia PDF Downloads 19918571 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 13418570 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction
Authors: Huijuan Liu, Fukun Li, Hao Yuan
Abstract:
The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration
Procedia PDF Downloads 13618569 Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean
Authors: Armel Zacharie Ekoa Bessa, Annick Kwewouo Janpou
Abstract:
Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk.Keywords: heavy metals, pollution, atlantic ocean, sediments
Procedia PDF Downloads 8418568 Statistical Characteristics of Code Formula for Design of Concrete Structures
Authors: Inyeol Paik, Ah-Ryang Kim
Abstract:
In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property
Procedia PDF Downloads 31918567 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression
Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele
Abstract:
Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering
Procedia PDF Downloads 3418566 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 32118565 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure
Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi
Abstract:
With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance
Procedia PDF Downloads 17418564 Modified Fuzzy Delphi Method to Incorporate Healthcare Stakeholders’ Perspectives in Selecting Quality Improvement Projects’ Criteria
Authors: Alia Aldarmaki, Ahmad Elshennawy
Abstract:
There is a global shift in healthcare systems’ emphasizing engaging different stakeholders in selecting quality improvement initiatives and incorporating their preferences to improve the healthcare efficiency and outcomes. Although experts bring scientific knowledge based on the scientific model and their personal experience, other stakeholders can bring new insights and information into the decision-making process. This study attempts to explore the impact of incorporating different stakeholders’ preference in identifying the most significant criteria that should be considered in healthcare for electing the improvement projects. A Framework based on a modified Fuzzy Delphi Method (FDM) was built. In addition to, the subject matter experts, doctors/physicians, nurses, administrators, and managers groups contribute to the selection process. The research identifies potential criteria for evaluating projects in healthcare, then utilizes FDM to capture expertise knowledge. The first round in FDM is intended to validate the identified list of criteria from experts; which includes collecting additional criteria from experts that the literature might have overlooked. When an acceptable level of consensus has been reached, a second round is conducted to obtain experts’ and other related stakeholders’ opinions on the appropriate weight of each criterion’s importance using linguistic variables. FDM analyses eliminate or retain the criteria to produce a final list of the critical criteria to select improvement projects in healthcare. Finally, reliability and validity were investigated using Cronbach’s alpha and factor analysis, respectively. Two case studies were carried out in a public hospital in the United Arab Emirates to test the framework. Both cases demonstrate that even though there were common criteria between the experts and the stakeholders, still stakeholders’ perceptions bring additional critical criteria into the evaluation process, which can impact the outcomes. Experts selected criteria related to strategical and managerial aspects, while the other participants preferred criteria related to social aspects such as health and safety and patients’ satisfaction. The health and safety criterion had the highest important weight in both cases. The analysis showed that Cronbach’s alpha value is 0.977 and all criteria have factor loading greater than 0.3. In conclusion, the inclusion of stakeholders’ perspectives is intended to enhance stakeholders’ engagement, improve transparency throughout the decision process, and take robust decisions.Keywords: Fuzzy Delphi Method, fuzzy number, healthcare, stakeholders
Procedia PDF Downloads 12818563 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 18218562 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 6418561 Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users
Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant
Abstract:
Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.Keywords: social media advertising, trust, older consumers, internet studies
Procedia PDF Downloads 4018560 Data-Driven Dynamic Overbooking Model for Tour Operators
Authors: Kannapha Amaruchkul
Abstract:
We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator
Procedia PDF Downloads 13418559 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change
Procedia PDF Downloads 24718558 Critical Factors of IFRS Adoption in Bank Industries In Middle East Countries
Authors: Benjamin Bae
Abstract:
This study investigates the relationship between the adoption of International Financial Reporting Standards (IFRS) and the performance of banks in a number of Middle East countries. We examine whether performance levels and audit qualities play any role in adopting the International Financial Reporting Standards (IFRS) in Middle East banks. This study hypothesizes that, in general, banks with high performance and audit quality measures tend to adopt the IFRS than low-performing banks, as the adoption of a new standard takes lots of time and expenses, which could be an additional burden to them. The results show that three hypotheses are strongly supported whereas the cultural factor hypothesis is not. Banks with high ROA and ROE tend to adopt IFRS than low-performing banks. Big banks are also more likely to adopt IFRS than small or medium-sized banks. Contrary to the hypothesis, the Islamic bank status as a cultural factor has some positive impact on the adoption of the banks in the region. Overall, this research adds to our understanding of the bank’s performance. First, evidence on the relationship between the adoption of IFRS and the bank’s performance should be useful to investors. Second, the findings of this study provide financial statement users with useful information about the bank’s performance measures.Keywords: IFRS, financial performance, audit quality, culture, firm size
Procedia PDF Downloads 4018557 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria
Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu
Abstract:
The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic
Procedia PDF Downloads 44518556 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 44