Search results for: Wireless Sensor Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4322

Search results for: Wireless Sensor Networks

2042 Development of a Low-Cost Smart Insole for Gait Analysis

Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri

Abstract:

Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.

Keywords: gait analysis, IoT, smart insole, accelerometer sensor

Procedia PDF Downloads 12
2041 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets

Authors: Sanghoon Bae, Hanju Cha

Abstract:

Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.

Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)

Procedia PDF Downloads 239
2040 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
2039 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 317
2038 Muslims in Diaspora Negotiating Islam through Muslim Public Sphere and the Role of Media

Authors: Sabah Khan

Abstract:

The idea of universal Islam tends to exaggerate the extent of homogeneity in Islamic beliefs and practices across Muslim communities. In the age of migration, various Muslim communities are in diaspora. The immediate implication of this is what happens to Islam in diaspora? How Islam gets represented in new forms? Such pertinent questions need to be dealt with. This paper shall draw on the idea of religious transnationalism, primarily transnational Islam. There are multiple ways to conceptualize transnational phenomenon with reference to Islam in terms of flow of people, transnational organizations and networks; Ummah oriented solidarity and the new Muslim public sphere. This paper specifically deals with the new Muslim public sphere. It primarily refers to the space and networks enabled by new media and communication technologies, whereby Muslim identity and Islamic normativity are rehearsed, debated by people in different locales. A new sense of public is emerging across Muslim communities, which needs to be contextualized. This paper uses both primary and secondary data. Primary data elicited through content analysis of audio-visuals on social media and secondary sources of information ranging from books, articles, journals, etc. The basic aim of the paper is to focus on the emerging Muslim public sphere and the role of media in expanding public spheres of Islam. It also explores how Muslims in diaspora negotiate Islam and Islamic practices through media and the new Muslim public sphere. This paper cogently weaves in discussions firstly, of re-intellectualization of Islamic discourse in the public sphere. In other words, how Muslims have come to reimagine their collective identity and critically look at fundamental principles and authoritative tradition. Secondly, the emerging alternative forms of Islam by young Muslims in diaspora. In other words, how young Muslims search for unorthodox ways and media for religious articulation, including music, clothing and TV. This includes transmission and distribution of Islam in diaspora in terms of emerging ‘media Islam’ or ‘soundbite Islam’. The new Muslim public sphere has offered an arena to a large number of participants to critically engage with Islam, which leads not only to a critical engagement with traditional forms of Islamic authority but also emerging alternative forms of Islam and Islamic practices.

Keywords: Islam, media, Muslims, public sphere

Procedia PDF Downloads 269
2037 Opportunities and Challenges of Digital Diplomacy in the Public Diplomacy of the Islamic Republic of Iran

Authors: Somayeh Pashaee

Abstract:

The ever-increasing growth of the Internet and the development of information and communication technology have prompted the politicians of different countries to use virtual networks as an efficient tool for their foreign policy. The communication of governments and countries, even in the farthest places from each other, through electronic networks, has caused vast changes in the way of statecraft and governance. Importantly, in the meantime, diplomacy, which is always based on information and communication, has been affected by the new prevailing conditions and new technologies more than other areas and has faced greater changes. The emergence of virtual space and the formation of new communication tools in the field of public diplomacy has led to the redefinition of the framework of diplomacy and politics in the international arena and the appearance of a new aspect of diplomacy called digital diplomacy. Digital diplomacy is in the concept of changing relations from a face-to-face and traditional way to a non-face-to-face and new way, and its purpose is to solve foreign policy issues using virtual space. Digital diplomacy, by affecting diplomatic procedures and its change, explains the role of technology in the visualization and implementation of diplomacy in different ways. The purpose of this paper is to investigate the position of digital diplomacy in the public diplomacy of the Islamic Republic of Iran. The paper tries to answer these two questions in a descriptive-analytical way, considering the progress of communication and the role of virtual space in the service of diplomacy, what is the approach of the Islamic Republic of Iran towards digital diplomacy and the use of a new way of establishing foreign relations in public diplomacy? What capacities and damages are facing the country after the use of this type of new diplomacy? In this paper, various theoretical concepts in the field of public diplomacy and modern diplomacy, including Geoff Berridge, Charles Kegley, Hans Tuch and Ronald Peter Barston, as well as the theoretical framework of Marcus Holmes on digital diplomacy, will be used as a conceptual basis to support the analysis. As a result, in order to better achieve the political goals of the country, especially in foreign policy, the approach of the Islamic Republic of Iran to public diplomacy with a focus on digital diplomacy should be strengthened and revised. Today, only emphasizing on advancing diplomacy through traditional methods may weaken Iran's position in the public opinion level from other countries.

Keywords: digital diplomacy, public diplomacy, islamic republic of Iran, foreign policy, opportunities and challenges

Procedia PDF Downloads 113
2036 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China

Authors: Xiping Wang,Shuran Yao, Liqin Dai

Abstract:

Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.

Keywords: bayesian networks, climatic change, freezing Injury, winter wheat

Procedia PDF Downloads 407
2035 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance

Procedia PDF Downloads 337
2034 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System

Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao

Abstract:

Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.

Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket

Procedia PDF Downloads 203
2033 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 63
2032 Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System

Authors: Muhammad Dawood Idrees, Maria Hafeez, Arsalan Ansari

Abstract:

Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country.

Keywords: toll tax collection, waiting time, wastages, driver fatigue

Procedia PDF Downloads 146
2031 Transnational Initiatives, Local Perspectives: The Potential of Australia-Asia BRIDGE School Partnerships Project to Support Teacher Professional Development in India

Authors: Atiya Khan

Abstract:

Recent research on the condition of school education in India has reaffirmed the importance of quality teacher professional development, especially in light of the rapid changes in teaching methods, learning theories, curriculum, and major shifts in information and technology that education systems are experiencing around the world. However, the quality of programs of teacher professional development in India is often uneven, in some cases non-existing. The educational authorities in India have long recognized this and have developed a range of programs to assist in-service teacher education. But, these programs have been mostly inadequate at improving the quality of teachers in India. Policy literature and reports indicate that the unevenness of these programs and more generally the lack of quality teacher professional development in India are due to factors such as a large number of teachers, budgetary constraints, top-down decision making, teacher overload, lack of infrastructure, and little or no follow-up. The disparity between the government stated goals for quality teacher professional development in India and its inability to meet the learning needs of teachers suggests that new interventions are needed. The realization that globalization has brought about an increase in the social, cultural, political and economic interconnectedness between countries has also given rise to transnational opportunities for education systems, such as India’s, aiming to build their capacity to support teacher professional development. Moreover, new developments in communication technologies seem to present a plausible means of achieving high-quality professional development for teachers through the creation of social learning spaces, such as transnational learning networks. This case study investigates the potential of one such transnational learning network to support the quality of teacher professional development in India, namely the Australia-Asia BRIDGE School Partnerships Project. It explores the participation of some fifteen teachers and their principals from BRIDGE participating schools in Delhi region of India; focusing on their professional development expectations from the BRIDGE program and account for their experiences in the program, in order to determine the program’s potential for the professional development of teachers in this study.

Keywords: case study, Australia-Asia BRIDGE Project, teacher professional development, transnational learning networks

Procedia PDF Downloads 264
2030 Rotational and Linear Accelerations of an Anthropometric Test Dummy Head from Taekwondo Kicks among Amateur Practitioners

Authors: Gabriel P. Fife, Saeyong Lee, David M. O'Sullivan

Abstract:

Introduction: Although investigations into injury characteristics are represented well in the literature, few have investigated the biomechanical characteristics associated with head impacts in Taekwondo. Therefore, the purpose of this study was to identify the kinematic characteristics of head impacts due to taekwondo kicks among non-elite practitioners. Participants: Male participants (n= 11, 175 + 5.3 cm, 71 + 8.3 kg) with 7.5 + 3.6 years of taekwondo training volunteered for this study. Methods: Participants were asked to perform five repetitions of each technique (i.e., turning kick, spinning hook kick, spinning back kick, front axe kick, and clench axe kick) aimed at the Hybrid III head with their dominant kicking leg. All participants wore a protective foot pad (thickness = 12 mm) that is commonly used in competition and training. To simulate head impact in taekwondo, the target consisted of a Hybrid III 50th Percentile Crash Test Dummy (Hybrid III) head (mass = 5.1 kg) and neck (fitted with taekwondo headgear) secured to an aluminum support frame and positioned to each athlete’s standing height. The Hybrid III head form was instrumented with a 500 g tri-axial accelerometer (PCB Piezotronics) mounted to the head center of gravity to obtain resultant linear accelerations (RLA). Rotational accelerations were collected using three angular rate sensors mounted orthogonally to each other (Diversified Technical Systems ARS-12 K Angular Rate Sensor). The accelerometers were interfaced via a 3-channel, battery-powered integrated circuit piezoelectric sensor signal conditioner (PCB Piezotronics) and connected to a desktop computer for analysis. Acceleration data were captured using LABVIEW Signal Express and processed in accordance with SAE J211-1 channel frequency class 1000. Head injury criteria values (HIC) were calculated using the VSRSoftware. A one-way analysis of variance was used to determine differences between kicks, while the Tukey HSD test was employed for pairwise comparisons. The level of significance was set to an effect size of 0.20. All statistical analyses were done using R 3.1.0. Results: A statistically significant difference was observed in RLA (p = 0.00075); however, these differences were not clinically meaningful (η² = 0.04, 95% CI: -0.94 to 1.03). No differences were identified with ROTA (p = 0.734, η² = 0.0004, 95% CI: -0.98 to 0.98). A statistically significant difference (p < 0.001) between kicks in HIC was observed, with a medium effect (η2= 0.08, 95% CI: -0.98 to 1.07). However, the confidence interval of this difference indicates uncertainty. Tukey HSD test identified differences (p < 0.001) between kicking techniques in RLA and HIC. Conclusion: This study observed head impact levels that were comparable to previous studies of similar objectives and methodology. These data are important as impact measures from this study may be more representative of impact levels experienced by non-elite competitors. Although the clench axe kick elicited a lower RLA, the ROTA of this technique was higher than levels from other techniques (although not large differences in reference to effect sizes). As the axe kick has been reported to cause severe head injury, future studies may consider further study of this kick important.

Keywords: Taekwondo, head injury, biomechanics, kicking

Procedia PDF Downloads 25
2029 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 16
2028 Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam

Authors: Saeed Khandan Siar, Stefan Tenbohlen, Christian Breuer, Raphael Lebreton

Abstract:

The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model.

Keywords: CFD, conjugated heat transfer, power transformers, temperature distribution

Procedia PDF Downloads 420
2027 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs

Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.

Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour

Procedia PDF Downloads 91
2026 The Role of Oral and Intestinal Microbiota in European Badgers

Authors: Emma J. Dale, Christina D. Buesching, Kevin R. Theis, David W. Macdonald

Abstract:

This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway.

Keywords: communication, energetics, fitness, free-ranging animals, immunology

Procedia PDF Downloads 186
2025 Dual Reconfigurable Antenna Using Capacitive Coupling Slot and Parasitic Square Ring

Authors: M. Abou Al-alaa, H. A. Elsadek, E. A. Abdallah, E. A. Hashish

Abstract:

A square patch antenna with both frequency and polarization reconfigurability is presented. The antenna consists of a square patch with coplanar feed on the ground plane. On the patch side, there is a parasitic square ring that is responsible for changing the antenna polarization. On the ground plane, there is a rectangular slot. By changing of length of this slot, the antenna resonance frequency can be changed. The antenna operates at 1.57 and 2.45 GHz that used in GPS and Bluetooth applications, respectively. The length of the slot in the proposed antenna is 40 mm, and the antenna operates at the lower frequency (1.57 GHz). By using switches in the ground plane the slot length can be adjust to 24 mm, so the antenna operates at upper frequency (2.45 GHz). Two switches are mounted on the parasitic ring at optimized positions. By switching between the different states of these two switches, the proposed antenna operates with linear polarization (LP) and circular polarization (CP) at each operating frequency. The antenna gain at 1.57 and 2.45 GHz are 5.9 and 7.64 dBi, respectively. The antenna is analyzed using the CST Microwave Studio. The proposed antenna was fabricated and measured. Results comparison shows good agreement. The antenna has applications in several wireless communication systems.

Keywords: microstrip patch antenna, reconfigurable antenna, frequency reconfigurability, polarization reconfigurability, parasitic square ring, linear polarization, circular polarization

Procedia PDF Downloads 530
2024 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops

Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan

Abstract:

In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.

Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis

Procedia PDF Downloads 379
2023 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle

Abstract:

This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 94
2022 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 146
2021 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 108
2020 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 257
2019 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing

Authors: S. Vignesh, K. S. Rangasamy

Abstract:

The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.

Keywords: CCD, optics, image processing, D3CIP

Procedia PDF Downloads 355
2018 The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication

Authors: Shahid M. Ali, Zakiullah

Abstract:

An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system.

Keywords: dual band, microstrip patch antenna, HFSS, Ku band, satellite

Procedia PDF Downloads 359
2017 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage

Authors: J.Das, Gyan Wrat

Abstract:

Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.

Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit

Procedia PDF Downloads 397
2016 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks

Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal

Abstract:

Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.

Keywords: GIS, smart water, sustainability, urban water management

Procedia PDF Downloads 214
2015 Portable Environmental Parameter Monitor Based on STM32

Authors: Liang Zhao, Chongquan Zhong

Abstract:

Introduction: According to statistics, people spend 80% to 90% of time indoor, so indoor air quality, either at home or in the office, greatly impacts the quality of life, health and work efficiency. Therefore, indoor air quality is very important to human activities. With the acceleration of urbanization, people are spending more time in indoor activity. The time in indoor environment, the living space, and the frequency interior decoration are all increasingly increased. However, housing decoration materials contain formaldehyde and other harmful substances, causing environmental and air quality problems, which have brought serious damage to countless families and attracted growing attention. According to World Health Organization statistics, the indoor environments in more than 30% of buildings in China are polluted by poisonous and harmful gases. Indoor pollution has caused various health problems, and these widespread public health problems can lead to respiratory diseases. Long-term inhalation of low-concentration formaldehyde would cause persistent headache, insomnia, weakness, palpitation, weight loss and vomiting, which are serious impacts on human health and safety. On the other hand, as for offices, some surveys show that good indoor air quality helps to enthuse the staff and improve the work efficiency by 2%-16%. Therefore, people need to further understand the living and working environments. There is a need for easy-to-use indoor environment monitoring instruments, with which users only have to power up and monitor the environmental parameters. The corresponding real-time data can be displayed on the screen for analysis. Environment monitoring should have the sensitive signal alarm function and send alarm when harmful gases such as formaldehyde, CO, SO2, are excessive to human body. System design: According to the monitoring requirements of various gases, temperature and humidity, we designed a portable, light, real-time and accurate monitor for various environmental parameters, including temperature, humidity, formaldehyde, methane, and CO. This monitor will generate an alarm signal when a target is beyond the standard. It can conveniently measure a variety of harmful gases and provide the alarm function. It also has the advantages of small volume, convenience to carry and use. It has a real-time display function, outputting the parameters on the LCD screen, and a real-time alarm function. Conclusions: This study is focused on the research and development of a portable parameter monitoring instrument for indoor environment. On the platform of an STM32 development board, the monitored data are collected through an external sensor. The STM32 platform is for data acquisition and processing procedures, and successfully monitors the real-time temperature, humidity, formaldehyde, CO, methane and other environmental parameters. Real-time data are displayed on the LCD screen. The system is stable and can be used in different indoor places such as family, hospital, and office. Meanwhile, the system adopts the idea of modular design and is superior in transplanting. The scheme is slightly modified and can be used similarly as the function of a monitoring system. This monitor has very high research and application values.

Keywords: indoor air quality, gas concentration detection, embedded system, sensor

Procedia PDF Downloads 255
2014 A Semantic E-Learning and E-Assessment System of Learners

Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji

Abstract:

The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.

Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning

Procedia PDF Downloads 332
2013 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 300