Search results for: machine modelling
2312 Learning and Practicing Assessment in a Pre-Service Teacher Education Program: Comparative Perspective of UK and Pakistani Universities
Authors: Malik Ghulam Behlol, Alison Fox, Faiza Masood, Sabiha Arshad
Abstract:
This paper explores the barriers to the application of learning-supportive assessment at teaching practicum while investigating the role of university teachers (UT), cooperative teachers (CT), prospective teachers ( PT) and heads of the practicum schools (HPS) in the selected universities of Pakistan and the UK. It is a qualitative case study and data were collected through the lesson observation of UT in the pre-service teacher education setting and PT in practicum schools. Interviews with UT, HPS, and Focus Group Discussions with PT were conducted too. The study has concluded that as compared to the UK counterpart, PT in Pakistan faces significant barriers in applying learning-supportive assessment in the school practicum settings because of large class sizes, lack of institutionalised collaboration between universities and schools, poor modelling of the lesson, ineffective feedback practices, lower order thinking assignments, and limited opportunities to use technology in school settings.Keywords: assessment, pre-service teacher education, theory-practice gap, teacher education
Procedia PDF Downloads 1232311 Crustal Scale Seismic Surveys in Search for Gawler Craton Iron Oxide Cu-Au (IOCG) under Very Deep Cover
Authors: E. O. Okan, A. Kepic, P. Williams
Abstract:
Iron oxide copper gold (IOCG) deposits constitute important sources of copper and gold in Australia especially since the discovery of the supergiant Olympic Dam deposits in 1975. They are considered to be metasomatic expressions of large crustal-scale alteration events occasioned by intrusive actions and are associated with felsic igneous rocks in most cases, commonly potassic igneous magmatism, with the deposits ranging from ~2.2 –1.5 Ga in age. For the past two decades, geological, geochemical and potential methods have been used to identify the structures hosting these deposits follow up by drilling. Though these methods have largely been successful for shallow targets, at deeper depth due to low resolution they are limited to mapping only very large to gigantic deposits with sufficient contrast. As the search for ore-bodies under regolith cover continues due to depletion of the near surface deposits, there is a compelling need to develop new exploration technology to explore these deep seated ore-bodies within 1-4km which is the current mining depth range. Seismic reflection method represents this new technology as it offers a distinct advantage over all other geophysical techniques because of its great depth of penetration and superior spatial resolution maintained with depth. Further, in many different geological scenarios, it offers a greater ‘3D mapability’ of units within the stratigraphic boundary. Despite these superior attributes, no arguments for crustal scale seismic surveys have been proposed because there has not been a compelling argument of economic benefit to proceed with such work. For the seismic reflection method to be used at these scales (100’s to 1000’s of square km covered) the technical risks or the survey costs have to be reduced. In addition, as most IOCG deposits have large footprint due to its association with intrusions and large fault zones; we hypothesized that these deposits can be found by mainly looking for the seismic signatures of intrusions along prospective structures. In this study, we present two of such cases: - Olympic Dam and Vulcan iron-oxide copper-gold (IOCG) deposits all located in the Gawler craton, South Australia. Results from our 2D modelling experiments revealed that seismic reflection surveys using 20m geophones and 40m shot spacing as an exploration tool for locating IOCG deposit is possible even when hosted in very complex structures. The migrated sections were not only able to identify and trace various layers plus the complex structures but also show reflections around the edges of intrusive packages. The presences of such intrusions were clearly detected from 100m to 1000m depth range without losing its resolution. The modelled seismic images match the available real seismic data and have the hypothesized characteristics; thus, the seismic method seems to be a valid exploration tool to find IOCG deposits. We therefore propose that 2D seismic survey is viable for IOCG exploration as it can detect mineralised intrusive structures along known favourable corridors. This would help in reducing the exploration risk associated with locating undiscovered resources as well as conducting a life-of-mine study which will enable better development decisions at the very beginning.Keywords: crustal scale, exploration, IOCG deposit, modelling, seismic surveys
Procedia PDF Downloads 3252310 Mathematical Modelling for Diesel Consumption of Articulated Vehicle Used in Oyo State, Nigeria
Authors: Ganiyu Samson Okunlola, Ladanu Abiodun Ajala, Olaide Oluwaseun Adegbayo
Abstract:
Since the usefulness of articulated vehicles is becoming more apparent and the diesel consumption of these vehicles constitutes a major portion of operating costs, development of mathematical model for their diesel consumption is of a great importance. Therefore, the present work developed a quantitative relationship between diesel consumption and vehicle age, annual use and cost of maintenance of the different makes of articulated vehicles. The vehicles selected for the study were FIAT 682 T3, IVECO 19036 and M.A.N. Diesel 19.240. The operating parameters for 90 vehicles of different age groups were recorded. Multiple regression models for diesel consumption of articulated vehicles of different makes were developed. From the analysis of results, it can be concluded that as the age of the vehicles increases, the diesel consumption increases. Also, as the diesel consumption increases, the cost of maintenance increases and there is a subsequent decrease in annual use. Moreover, FIAT 682 T3 and IVECO 19036 should be replaced at 7 years of age while M.A.N diesel should be replaced at 8 years of age. These are the ages where the diesel consumption becomes abnormal and uneconomical and they are points of optimal overhaul.Keywords: vehicle, overhaul, age, uneconomical, diesel, consumption
Procedia PDF Downloads 2512309 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3262308 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses
Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau
Abstract:
Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.Keywords: order picking, warehouse, clustering, unsupervised learning
Procedia PDF Downloads 1592307 Exergy Analysis and Evaluation of the Different Flowsheeting Configurations for CO₂ Capture Plant Using 2-Amino-2-Methyl-1-Propanol
Authors: Ebuwa Osagie, Vasilije Manovic
Abstract:
Exergy analysis provides the identification of the location, sources of thermodynamic inefficiencies, and magnitude in a thermal system. Thus, both the qualitative and quantitative assessment can be evaluated with exergy, unlike energy which is based on quantitative assessment only. The main purpose of exergy analysis is to identify where exergy is destroyed. Thus, reduction of the exergy destruction and losses associated with the capture plant systems can improve work potential. Furthermore, thermodynamic analysis of different configurations of the process helps to identify opportunities for reducing the steam requirements for each of the configurations. This paper presents steady-state simulation and exergy analysis of the 2-amino-2-methyl-1-propanol (AMP)-based post-combustion capture (PCC) plant. Exergy analysis performed for the AMP-based plant and the different configurations revealed that the rich split with intercooling configuration gave the highest exergy efficiency of 73.6%, while that of the intercooling and the reference AMP-based plant were 57.3% and 55.8% respectively.Keywords: 2-amino-2-methyl-1-propanol, modelling, and simulation, post-combustion capture plant, exergy analysis, flowsheeting configurations
Procedia PDF Downloads 1642306 Key Factors Influencing Individual Knowledge Capability in KIFs
Authors: Salman Iqbal
Abstract:
Knowledge management (KM) literature has mainly focused on the antecedents of KM. The purpose of this study is to investigate the effect of specific human resource management (HRM) practices on employee knowledge sharing and its outcome as individual knowledge capability. Based on previous literature, a model is proposed for the study and hypotheses are formulated. The cross-sectional dataset comes from a sample of 19 knowledge intensive firms (KIFs). This study has run an item parceling technique followed by Confirmatory Factor Analysis (CFA) on the latent constructs of the research model. Employees’ collaboration and their interpersonal trust can help to improve their knowledge sharing behaviour and knowledge capability within organisations. This study suggests that in future, by using a larger sample, better statistical insight is possible. The findings of this study are beneficial for scholars, policy makers and practitioners. The empirical results of this study are entirely based on employees’ perceptions and make a significant research contribution, given there is a dearth of empirical research focusing on the subcontinent.Keywords: employees’ collaboration, individual knowledge capability, knowledge sharing, monetary rewards, structural equation modelling
Procedia PDF Downloads 2752305 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 122304 Asynchronous Sequential Machines with Fault Detectors
Authors: Seong Woo Kwak, Jung-Min Yang
Abstract:
A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector
Procedia PDF Downloads 3492303 Assessment of the High-Speed Ice Friction of Bob Skeleton Runners
Authors: Agata Tomaszewska, Timothy Kamps, Stephan R. Turnock, Nicola Symonds
Abstract:
Bob skeleton is a highly competitive sport in which an athlete reaches speeds up to 40 m/s sliding, head first, down an ice track. It is believed that the friction between the runners and ice significantly contributes to the amount of the total energy loss during a bob skeleton descent. There is only limited available experimental data regarding the friction of bob skeleton runners or indeed steel on the ice at high sliding speeds ( > 20 m/s). Testing methods used to investigate the friction of steel on ice in winter sports have been outlined, and their accuracy and repeatability discussed. A system thinking approach was used to investigate the runner-ice interaction during sliding and create concept designs of three ice tribometers. The operational envelope of the bob skeleton system has been defined through mathematical modelling. Designs of a drum, linear and inertia pin-on-disk tribometers were developed specifically for bob skeleton runner testing with the requirement of reaching up to 40 m/s speed and facilitate fresh ice sliding. The design constraints have been outline and the proposed solutions compared based on the ease of operation, accuracy and the development cost.Keywords: bob skeleton, ice friction, high-speed tribometers, sliding friction
Procedia PDF Downloads 2612302 Predicting Personality and Psychological Distress Using Natural Language Processing
Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi
Abstract:
Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality
Procedia PDF Downloads 792301 Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids
Authors: Rafael Oliveira Santos, Luciano Pessanha Moreira, Marcelo Costa Cardoso
Abstract:
Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid.Keywords: blanking process, damage model, finite element modelling, inconel 718, spacer grids, stamping process
Procedia PDF Downloads 3442300 Calibration of Discrete Element Method Parameters for Modelling DRI Pellets Flow
Authors: A. Hossein Madadi-Najafabadi, Masoud Nasiri
Abstract:
The discrete element method is a powerful technique for numerical modeling the flow of granular materials such as direct reduced iron. It would enable us to study processes and equipment related to the production and handling of the material. However, the characteristics and properties of the granules have to be adjusted precisely to achieve reliable results in a DEM simulation. The main properties for DEM simulation are size distribution, density, Young's modulus, Poisson's ratio and the contact coefficients of restitution, rolling friction and sliding friction. In the present paper, the mentioned properties are determined for DEM simulation of DRI pellets. A reliable DEM simulation would contribute to optimizing the handling system of DRIs in an iron-making plant. Among the mentioned properties, Young's modulus is the most important parameter, which is usually hard to get for particulate solids. Here, an especial method is utilized to precisely determine this parameter for DRI.Keywords: discrete element method, direct reduced iron, simulation parameters, granular material
Procedia PDF Downloads 1802299 Modelling and Simulation of Milk Fouling
Authors: Harche Rima, Laoufi Nadia Aicha
Abstract:
This work focuses on the study and modeling of the fouling phenomenon in a vertical pipe. In the first step, milk is one of the fluids obeying the phenomenon of fouling because of the denaturation of these proteins, especially lactoglobulin, which is the active element of milk, and to facilitate its use, we chose to study milk as a fouling fluid. In another step, we consider the test section of our installation as a tubular-type heat exchanger that works against the current and in a closed circuit. A simple mathematical model of Kern & Seaton, based on the kinetics of the fouling resistance, was used to evaluate the influence of the operating parameters (fluid flow velocity and exchange wall temperature) on the fouling resistance. The influence of the variation of the fouling resistance with the operating conditions on the efficiency of the heat exchanger and the importance of the dirty state exchange coefficient as an exchange quality control parameter were discussed and examined. On the other hand, an electronic scanning microscope analysis was performed on the milk deposit in order to obtain its actual image and composition, which allowed us to calculate the thickness of this deposit.Keywords: fouling, milk, tubular heat exchanger, fouling resistance
Procedia PDF Downloads 522298 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns
Authors: Fawaz Abdulmalek
Abstract:
The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.Keywords: flowshop scheduling, random failures, johnson rule, simulation
Procedia PDF Downloads 3392297 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground
Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane
Abstract:
Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.Keywords: reliability approach, storage tanks, monte carlo simulation, seismic acceleration
Procedia PDF Downloads 3072296 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 732295 Extraction of the Volatile Oils of Dictyopteris Membranacea by Focused Microwave Assisted Hydrodistillation and Supercritical Carbon Dioxide: Chemical Composition and Kinetic Data
Authors: Mohamed El Hattab
Abstract:
The Supercritical carbon dioxide (SFE) and the focused microwave-assisted hydrodistillation (FMAHD) were employed to isolate the volatile fraction of the brown alga Dictyopteris membranacea from the crude extract. The volatiles fractions obtained were analyzed by GC/MS. The major compounds in this case: dictyopterene A, 6-butylcyclohepta-1,4-diene, Undec-1-en-3-one, Undeca-1,4-dien-3-one, (3-oxoundec-4-enyl) sulphur, tetradecanoic acid, hexadecanoic acid, 3-hexyl-4,5-dithia-cycloheptanone and albicanol (this later is present only in the FMAHD oil) are identified by comparing their mass spectra with those reported on the commercial MS data base and also on our previously work. A kinetic study realized on both extraction processes and followed by an external standard quantification has allowed the study of the mass percent evolution of the major compounds in the two oils, an empirical mathematical modelling was used to describe their kinetic extraction.Keywords: dictyopteris membranacea, extraction techniques, mathematical modeling, volatile oils
Procedia PDF Downloads 4282294 Structural Molecular Dynamics Modelling of FH2 Domain of Formin DAAM
Authors: Rauan Sakenov, Peter Bukovics, Peter Gaszler, Veronika Tokacs-Kollar, Beata Bugyi
Abstract:
FH2 (formin homology-2) domains of several proteins, collectively known as formins, including DAAM, DAAM1 and mDia1, promote G-actin nucleation and elongation. FH2 domains of these formins exist as oligomers. Chain dimerization by ring structure formation serves as a structural basis for actin polymerization function of FH2 domain. Proper single chain configuration and specific interactions between its various regions are necessary for individual chains to form a dimer functional in G-actin nucleation and elongation. FH1 and WH2 domain-containing formins were shown to behave as intrinsically disordered proteins. Thus, the aim of this research was to study structural dynamics of FH2 domain of DAAM. To investigate structural features of FH2 domain of DAAM, molecular dynamics simulation of chain A of FH2 domain of DAAM solvated in water box in 50 mM NaCl was conducted at temperatures from 293.15 to 353.15K, with VMD 1.9.2, NAMD 2.14 and Amber Tools 21 using 2z6e and 1v9d PDB structures of DAAM was obtained on I-TASSER webserver. Calcium and ATP bound G-actin 3hbt PDB structure was used as a reference protein with well-described structural dynamics of denaturation. Topology and parameter information of CHARMM 2012 additive all-atom force fields for proteins, carbohydrate derivatives, water and ions were used in NAMD 2.14 and ff19SB force field for proteins in Amber Tools 21. The systems were energy minimized for the first 1000 steps, equilibrated and produced in NPT ensemble for 1ns using stochastic Langevin dynamics and the particle mesh Ewald method. Our root-mean square deviation (RMSD) analysis of molecular dynamics of chain A of FH2 domains of DAAM revealed similar insignificant changes of total molecular average RMSD values of FH2 domain of these formins at temperatures from 293.15 to 353.15K. In contrast, total molecular average RMSD values of G-actin showed considerable increase at 328K, which corresponds to the denaturation of G-actin molecule at this temperature and its transition from native, ordered, to denatured, disordered, state which is well-described in the literature. RMSD values of lasso and tail regions of chain A of FH2 domain of DAAM exhibited higher than total molecular average RMSD at temperatures from 293.15 to 353.15K. These regions are functional in intra- and interchain interactions and contain highly conserved tryptophan residues of lasso region, highly conserved GNYMN sequence of post region and amino acids of the shell of hydrophobic pocket of the salt bridge between Arg171 and Asp321, which are important for structural stability and ordered state of FH2 domain of DAAM and its functions in FH2 domain dimerization. In conclusion, higher than total molecular average RMSD values of lasso and post regions of chain A of FH2 domain of DAAM may explain disordered state of FH2 domain of DAAM at temperatures from 293.15 to 353.15K. Finally, absence of marked transition, in terms of significant changes in average molecular RMSD values between native and denatured states of FH2 domain of DAAM at temperatures from 293.15 to 353.15K, can make it possible to attribute these formins to the group of intrinsically disordered proteins rather than to the group of intrinsically ordered proteins such as G-actin.Keywords: FH2 domain, DAAM, formins, molecular modelling, computational biophysics
Procedia PDF Downloads 1362293 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope
Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori
Abstract:
Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D software. The numerical model is verified by experimental data of water depth in stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence models. The results showed a good agreement between numerical and experimental model as numerical model can be used to optimize of stilling basins.Keywords: experimental and numerical modelling, end adverse slope, flow parameters, USBR II stilling basin
Procedia PDF Downloads 1792292 From Problem Space to Executional Architecture: The Development of a Simulator to Examine the Effect of Autonomy on Mainline Rail Capacity
Authors: Emily J. Morey, Kevin Galvin, Thomas Riley, R. Eddie Wilson
Abstract:
The key challenges faced by integrating autonomous rail operations into the existing mainline railway environment have been identified through the understanding and framing of the problem space and stakeholder analysis. This was achieved through the completion of the first four steps of Soft Systems Methodology, where the problem space has been expressed via conceptual models. Having identified these challenges, we investigated one of them, namely capacity, via the use of models and simulation. This paper examines the approach used to move from the conceptual models to a simulation which can determine whether the integration of autonomous trains can plausibly increase capacity. Within this approach, we developed an architecture and converted logical models into physical resource models and associated design features which were used to build a simulator. From this simulator, we are able to analyse mixtures of legacy-autonomous operations and produce fundamental diagrams and trajectory plots to describe the dynamic behaviour of mixed mainline railway operations.Keywords: autonomy, executable architecture, modelling and simulation, railway capacity
Procedia PDF Downloads 832291 Some Conjectures and Programs about Computing the Detour Index of Molecular Graphs of Nanotubes
Authors: Shokofeh Ebrtahimi
Abstract:
Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G.Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.[1] The pioneers of the chemical graph theory are Alexandru Balaban, Ante Graovac, Ivan Gutman, Haruo Hosoya, Milan Randić and Nenad TrinajstićLet G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new program for computing the detour index of molecular graphs of nanotubes by heptagons is determineded. Some Conjectures about detour index of Molecular graphs of nanotubes is included.Keywords: chemical graph, detour matrix, Detour index, carbon nanotube
Procedia PDF Downloads 2922290 Time-Dependent Behaviour of Reinforced Concrete Beams under Sustained and Repeated Loading
Authors: Sultan Daud, John P. Forth, Nikolaos Nikitas
Abstract:
The current study aims to highlight the loading characteristics impact on the time evolution (focusing particularly on long term effects) of the deformation of realized reinforced concrete beams. Namely the tension stiffening code provisions (i.e. within Eurocode 2) are reviewed with a clear intention to reassess their operational value and predicting capacity. In what follows the experimental programme adopted along with some preliminary findings and numerical modelling attempts are presented. For a range of long slender reinforced concrete simply supported beams (4200 mm) constant static sustained and repeated cyclic loadings were applied mapping the time evolution of deformation. All experiments were carried out at the Heavy Structures Lab of the University of Leeds. During tests the mid-span deflection, creep coefficient and shrinkage strains were monitored for duration of 90 days. The obtained results are set against the values predicted by Eurocode 2 and the tools within an FE commercial package (i.e. Midas FEA) to yield that existing knowledge and practise is at times over-conservative.Keywords: Eurocode2, midas fea, repeated, sustained loading.
Procedia PDF Downloads 3472289 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5132288 Sustainability Performance in the Post-Pandemic Era: Employee Resilience Impact on Improving Employee and Organizational Performance
Authors: Sonali Mohite
Abstract:
Severe changes to Organizational Sustainability (OS) have been brought about by the COVID-19 pandemic. This situation forces organizations to tackle the competencies required to augment Employee Resilience (ER) and make profitable growth. This study explores how employee resilience contributes to both individual and organizational success in the wake of the COVID-19 pandemic. We suggest that employees who possess strong coping mechanisms and adaptability are better equipped to handle ongoing disruptions, resulting in improved individual performance metrics like productivity, engagement, and innovative thinking. Hence, exploring the efficiency of ER in improving EP and OS in post-pandemic (PP) is the aim of this research. By utilizing convenience sampling techniques, a total of 422 employees have been collected from numerous organizations. After that, the study’s hypothesis is analysed by using Structural Equation Modelling (SEM). As per the study’s findings, the ER factors of “Job Satisfaction (JS)”, “Self-Efficacy (SE)”, “Supervisors’ Support (SS)”, and “Facilitating Conditions (FC)” have positive and significant associations with organizational efficiency. Furthermore, the study’s findings also exhibited that there is the most important relation between SE and EOP.Keywords: employee resilience, employee performance, organizational performance, sustainability, post-pandemic
Procedia PDF Downloads 222287 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites
Authors: Kun Zhou
Abstract:
Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling
Procedia PDF Downloads 1532286 Conceptual Perimeter Model for Estimating Building Envelope Quantities
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Building girth is important in building economics and mostly used in quantities take-off of various cost items. Literature suggests that the use of conceptual quantities can improve the accuracy of cost models. Girth or perimeter of a building can be used to estimate conceptual quantities. Hence, the current paper aims to model the perimeter-area function of buildings shapes for use at the conceptual design stage. A detailed literature review on existing building shape indexes was carried out. An empirical approach was used to study the relationship between area and the shortest length of a four-sided orthogonal polygon. Finally, a mathematical approach was used to establish the observed relationships. The empirical results obtained were in agreement with the mathematical model developed. A new equation termed “conceptual perimeter equation” is proposed. The equation can be used to estimate building envelope quantities such as external wall area, external finishing area and scaffolding area before sketch or detailed drawings are prepared.Keywords: building envelope, building shape index, conceptual quantities, cost modelling, girth
Procedia PDF Downloads 3422285 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data
Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro
Abstract:
Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter
Procedia PDF Downloads 1502284 Modeling of Flows in Porous Materials under Pressure Difference
Authors: Nicoleta O. Tanase, Ciprian S. Mateescu
Abstract:
This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.Keywords: CFD, porous media, permeability, flow spectrum
Procedia PDF Downloads 552283 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh
Authors: Vivek Ganesh
Abstract:
Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.Keywords: inundation map, NDVI map, storm tide map, track map
Procedia PDF Downloads 268