Search results for: machine learning tools and techniques
14653 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project
Authors: Dorit Alt, Nirit Raichel
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling
Procedia PDF Downloads 31514652 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 10814651 The Impact of the Use of Some Multiple Intelligence-Based Teaching Strategies on Developing Moral Intelligence and Inferential Jurisprudential Thinking among Secondary School Female Students in Saudi Arabia
Authors: Sameerah A. Al-Hariri Al-Zahrani
Abstract:
The current study aims at getting acquainted with the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking among secondary school female students. The study has endeavored to answer the following questions: What is the impact of the use of some multiple intelligence-based teaching strategies on developing inferential jurisprudential thinking and moral intelligence among first-year secondary school female students? In the frame of this main research question, the study seeks to answer the following sub-questions: (i) What are the inferential jurisprudential thinking skills among first-year secondary school female students? (ii) What are the components of moral intelligence among first year secondary school female students? (iii) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on moral intelligence among first-year secondary school female students? (iv) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on developing the capacity for inferential jurisprudential thinking of juristic rules among first-year secondary school female students? The study has used the descriptive-analytical methodology in surveying, analyzing, and reviewing the literature on previous studies in order to benefit from them in building the tools of the study and the materials of experimental treatment. The study has also used the experimental method to study the impact of the independent variable (multiple intelligence strategies) on the two dependent variables (moral intelligence and inferential jurisprudential thinking) in first-year secondary school female students’ learning. The sample of the study is made up of 70 female students that have been divided into two groups: an experimental group consisting of 35 students who have been taught through multiple intelligence strategies, and a control group consisting of the other 35 students who have been taught normally. The two tools of the study (inferential jurisprudential thinking test and moral intelligence scale) have been implemented on the two groups as a pre-test. The female researcher taught the experimental group and implemented the two tools of the study. After the experiment, which lasted eight weeks, was over, the study showed the following results: (i) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the inferential jurisprudential thinking test (recognition of the evidence of jurisprudential rule, recognition of the motive for the jurisprudential rule, jurisprudential inferencing, analogical jurisprudence) in favor of the experimental group. (ii) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the components of the moral intelligence scale (sympathy, conscience, moral wisdom, tolerance, justice, respect) in favor of the experimental group. The study has, thus, demonstrated the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking.Keywords: moral intelligence, teaching, inferential jurisprudential thinking, secondary school
Procedia PDF Downloads 15914650 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 14114649 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability
Procedia PDF Downloads 45514648 The Development of Directed-Project Based Learning as Language Learning Model to Improve Students' English Achievement
Authors: Tri Pratiwi, Sufyarma Marsidin, Hermawati Syarif, Yahya
Abstract:
The 21st-century skills being highly promoted today are Creativity and Innovation, Critical Thinking and Problem Solving, Communication and Collaboration. Communication Skill is one of the essential skills that should be mastered by the students. To master Communication Skills, students must first master their Language Skills. Language Skills is one of the main supporting factors in improving Communication Skills of a person because by learning Language Skills students are considered capable of communicating well and correctly so that the message or how to deliver the message to the listener can be conveyed clearly and easily understood. However, it cannot be denied that English output or learning outcomes which are less optimal is the problem which is frequently found in the implementation of the learning process. This research aimed to improve students’ language skills by developing learning model in English subject for VIII graders of SMP N 1 Uram Jaya through Directed-Project Based Learning (DPjBL) implementation. This study is designed in Research and Development (R & D) using ADDIE model development. The researcher collected data through observation, questionnaire, interview, test, and documentation which were then analyzed qualitatively and quantitatively. The results showed that DPjBL is effective to use, it is seen from the difference in value between the pretest and posttest of the control class and the experimental class. From the results of a questionnaire filled in general, the students and teachers agreed to DPjBL learning model. This learning model can increase the students' English achievement.Keywords: language skills, learning model, Directed-Project Based Learning (DPjBL), English achievement
Procedia PDF Downloads 16514647 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 17214646 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access
Authors: A. Asgharzadeh, M. Maroufi
Abstract:
5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband
Procedia PDF Downloads 13414645 Investigation on the Effect of Sugarcane Bagasse/HDPE Composition on the Screw Withdrawal Resistance of Injection Molded Parts
Authors: Seyed Abdol Mohammad Rezavand, Mohammad Nikbakhsh
Abstract:
Withdrawal resistance of screws driven into HDPE/Sugarcane Bagasse injection molded parts was investigated. After chemical treatment and drying, SCB was pre-mixed with HDPE using twin extruder. The resulting granules are used in producing samples in injection molding machine. SCB with the quantity of %10, %20, and %30 was used. By using a suitable fixture, screw heads can take with tensile test machine grips. Parts with screws in the center and edge were fasten together. Then, withdrawal resistance was measured with tensile test machine. Injection gate is at the one edge of the part. The results show that by increasing SCB content in composite, the withdrawal resistance is decreased. Furthermore, the withdrawal resistance at the edges (near injection gate and the end of the filling path of mold cavity) is more than that of the center.Keywords: polyethylene, sugarcane bagasse, wood plastic, screw, withdrawal resistance
Procedia PDF Downloads 58314644 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 14414643 Genome Editing in Sorghum: Advancements and Future Possibilities: A Review
Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie
Abstract:
The advancement of target-specific genome editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), mega-nucleases, base editing (BE), prime editing (PE), transcription activator-like endonucleases (TALENs), and zinc-finger nucleases (ZFNs), have paved the way for a modern era of gene editing. CRISPR/Cas9, as a versatile, simple, cost-effective and robust system for genome editing, has dominated the genome manipulation field over the last few years. The application of CRISPR/Cas9 in sorghum improvement is particularly vital in the context of ecological, environmental and agricultural challenges, as well as global climate change. In this context, gene editing using CRISPR/Cas9 can improve nutritional value, yield, resistance to pests and disease and tolerance to different abiotic stress. Moreover, CRISPR/Cas9 can potentially perform complex editing to reshape already available elite varieties and new genetic variations. However, existing research is targeted at improving even further the effectiveness of the CRISPR/Cas9 genome editing techniques to fruitfully edit endogenous sorghum genes. These findings suggest that genome editing is a feasible and successful venture in sorghum. Newer improvements and developments of CRISPR/Cas9 techniques have further qualified researchers to modify extra genes in sorghum with improved efficiency. The fruitful application and development of CRISPR techniques for genome editing in sorghum will not only help in gene discovery, creating new, improved traits in sorghum regulating gene expression sorghum functional genomics, but also in making site-specific integration events.Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield
Procedia PDF Downloads 5914642 Pros and Cons of Teaching/Learning Online during COVID-19: English Department at Tahri Muhammed University of Bechar as a Case Study
Authors: Fatiha Guessabi
Abstract:
Students of the Tahri Muhammed University of Bechar shifted to the virtual platform using E-learning platforms when the lockdown started due to the Coronavirus. This paper aims to explore the advantages and inconveniences of online learning and teaching in EFL classes at Tahri Mohammed University. For this investigation, a questionnaire was addressed to EFL students and an interview was arranged with EFL teachers. Data analysis was obtained from 09 teachers and 70 students. After the investigation, the results show that some of the most applied educational technologies and applications are used to turn online EFL classes effectively exciting. Thus, EFL classes became more interactive. Although learners give positive viewpoints about online learning/teaching, they prefer to learn in the classroom.Keywords: advantages, disadvantages, COVID19, EFL, online learning/teaching, university of Bechar
Procedia PDF Downloads 16414641 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids
Authors: Ayalew Yimam Ali
Abstract:
The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.
Procedia PDF Downloads 2014640 Influence of Machine Resistance Training on Selected Strength Variables among Two Categories of Body Composition
Authors: Hassan Almoslim
Abstract:
Background: The machine resistance training is an exercise that uses the equipment as loads to strengthen and condition the musculoskeletal system and improving muscle tone. The machine resistance training is easy to use, allow the individual to train with heavier weights without assistance, useful for beginners and elderly populations and specific muscle groups. Purpose: The purpose of this study was to examine the impact of nine weeks of machine resistance training on maximum strength among lean and normal weight male college students. Method: Thirty-six male college students aged between 19 and 21 years from King Fahd University of petroleum & minerals participated in the study. The subjects were divided into two an equal groups called Lean Group (LG, n = 18) and Normal Weight Group (NWG, n = 18). The subjects whose body mass index (BMI) is less than 18.5 kg / m2 is considered lean and who is between 18.5 to 24.9 kg / m2 is normal weight. Both groups performed machine resistance training nine weeks, twice per week for 40 min per training session. The strength measurements, chest press, leg press and abdomen exercises were performed before and after the training period. 1RM test was used to determine the maximum strength of all subjects. The training program consisted of several resistance machines such as leg press, abdomen, chest press, pulldown, seated row, calf raises, leg extension, leg curls and back extension. The data were analyzed using independent t-test (to compare mean differences) and paired t-test. The level of significance was set at 0.05. Results: No change was (P ˃ 0.05) observed in all body composition variables between groups after training. In chest press, the NWG recorded a significantly greater mean different value than the LG (19.33 ± 7.78 vs. 13.88 ± 5.77 kg, respectively, P ˂ 0.023). In leg press and abdomen exercises, both groups revealed similar mean different values (P ˃ 0.05). When the post-test was compared with the pre-test, the NWG showed significant increases in the chest press by 47% (from 41.16 ± 12.41 to 60.49 ± 11.58 kg, P ˂ 001), abdomen by 34% (from 45.46 ± 6.97 to 61.06 ± 6.45 kg, P ˂ 0.001) and leg press by 23.6% (from 85.27 ± 15.94 to 105.48 ± 21.59 kg, P ˂ 0.001). The LG also illustrated significant increases by 42.6% in the chest press (from 32.58 ± 7.36 to 46.47 ± 8.93 kg, P ˂ 0.001), the abdomen by 28.5% (from 38.50 ± 7.84 to 49.50 ± 7.88 kg, P ˂ 0.001) and the leg press by 30.8% (from 70.2 ± 20.57 to 92.01 ± 22.83 kg, P ˂ 0.001). Conclusion: It was concluded that the lean and the normal weight male college students can benefit from the machine resistance-training program remarkably.Keywords: body composition, lean, machine resistance training, normal weight
Procedia PDF Downloads 35614639 Self-Reliant and Auto-Directed Learning: Modes, Elements, Fields and Scopes
Authors: Habibollah Mashhady, Behruz Lotfi, Mohammad Doosti, Moslem Fatollahi
Abstract:
An exploration of the related literature reveals that all instruction methods aim at training autonomous learners. After the turn of second language pedagogy toward learner-oriented strategies, learners’ needs were more focused. Yet; the historical, social and political aspects of learning were still neglected. The present study investigates the notion of autonomous learning and explains its various facets from a pedagogical point of view. Furthermore; different elements, fields and scopes of autonomous learning will be explored. After exploring different aspects of autonomy, it is postulated that liberatory autonomy is highlighted since it not only covers social autonomy but also reveals learners’ capabilities and human potentials. It is also recommended that learners consider different elements of autonomy such as motivation, knowledge, confidence, and skills.Keywords: critical pedagogy, social autonomy, academic learning, cultural notions
Procedia PDF Downloads 46114638 Enhancing Nursing Teams' Learning: The Role of Team Accountability and Team Resources
Authors: Sarit Rashkovits, Anat Drach- Zahavy
Abstract:
The research considers the unresolved question regarding the link between nursing team accountability and team learning and the resulted team performance in nursing teams. Empirical findings reveal disappointing evidence regarding improvement in healthcare safety and quality. Therefore, there is a need in advancing managerial knowledge regarding the factors that enhance constant healthcare teams' proactive improvement efforts, meaning team learning. We first aim to identify the organizational resources that are needed for team learning in nursing teams; second, to test the moderating role of nursing teams' learning resources in the team accountability-team learning link; and third, to test the moderated mediation model suggesting that nursing teams' accountability affects team performance by enhancing team learning when relevant resources are available to the team. We point on the intervening role of three team learning resources, namely time availability, team autonomy and performance data on the relation between team accountability and team learning and test the proposed moderated mediation model on 44 nursing teams (462 nurses and 44 nursing managers). The results showed that, as was expected, there was a positive significant link between team accountability and team learning and the subsequent team performance when time availability and team autonomy were high rather than low. Nevertheless, the positive team accountability- team learning link was significant when team performance feedback was low rather than high. Accordingly, there was a positive mediated effect of team accountability on team performance via team learning when either time availability or team autonomy were high and the availability of team performance data was low. Nevertheless, this mediated effect was negative when time availability and team autonomy were low and the availability of team performance data was high. We conclude that nurturing team accountability is not enough for achieving nursing teams' learning and the subsequent improved team performance. Rather there is need to provide nursing teams with adequate time, autonomy, and be cautious with performance feedback, as the latter may motivate nursing teams to repeat routine work strategies rather than explore improved ones.Keywords: nursing teams' accountability, nursing teams' learning, performance feedback, teams' autonomy
Procedia PDF Downloads 26414637 English Learning Strategy and Proficiency Level of the First Year Students, International College, Suan Sunandha Rajabhat University
Authors: Kanokrat Kunasaraphan
Abstract:
The purpose of the study was to identify whether English language learning strategies commonly used by the first year students at International College, Suan Sunandha Rajabhat University include six direct and indirect strategies. The study served to explore whether there was a difference in these students’ use of six direct and indirect English learning strategies between the different levels of their English proficiency. The questionnaire used as a research instrument was comprised of two parts: General information of participants and the Strategy Inventory for Language Learning (SILL). The researcher employed descriptive statistics and one-way ANOVA (F-test) to analyze the data. The results of the analysis revealed that English learning strategies commonly used by the first year students include six direct and indirect strategies, including differences in strategy use of the students with different levels of English proficiency. Recommendations for future research include the study of language learning strategy use with other research methods focusing on other languages, specific language skills, and/or the relationship of language learning strategy use and other factors in other programs and/or institutions.Keywords: English learning strategies, direct strategies, indirect strategies, proficiency level
Procedia PDF Downloads 30314636 Technique and Use of Machine Readable Dictionary: In Special Reference to Hindi-Marathi Machine Translation
Authors: Milind Patil
Abstract:
Present paper is a discussion on Hindi-Marathi Morphological Analysis and generating rules for Machine Translation on the basis of Machine Readable Dictionary (MRD). This used Transformative Generative Grammar (TGG) rules to design the MRD. As per TGG rules, the suffix of a particular root word is based on its Tense, Aspect, Modality and Voice. That's why the suffix is very important for the word meanings (or root meanings). The Hindi and Marathi Language both have relation with Indo-Aryan language family. Both have been derived from Sanskrit language and their script is 'Devnagari'. But there are lots of differences in terms of semantics and grammatical level too. In Marathi, there are three genders, but in Hindi only two (Masculine and Feminine), the Natural gender is absent in Hindi. Likewise other grammatical categories also differ in their level of use. For MRD the suffixes (or Morpheme) are of particular root word for GNP (Gender, Number and Person) are based on its natural phenomena. A particular Suffix and Morphine change as per the need of person, number and gender. The design of MRD also based on this format. In first, Person, Number, Gender and Tense are key points than root words and suffix of particular Person, Number Gender (PNG). After that the inferences are drawn on the basis of rules that is (V.stem) (Pre.T/Past.T) (x) + (Aux-Pre.T) (x) → (V.Stem.) + (SP.TM) (X).Keywords: MRD, TGG, stem, morph, morpheme, suffix, PNG, TAM&V, root
Procedia PDF Downloads 32414635 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 12914634 Challenges of Online Education and Emerging E-Learning Technologies in Nigerian Tertiary Institutions Using Adeyemi College of Education as a Case Study
Authors: Oluwatofunmi Otobo
Abstract:
This paper presents a review of the challenges of e-learning and e-learning technologies in tertiary institutions. This review is based on the researchers observations of the challenges of making use of ICT for learning in Nigeria using Adeyemi College of Education as a case study; this is in comparison to tertiary institutions in the UK, US and other more developed countries. In Nigeria and probably Africa as a whole, power is the major challenge. Its inconsistency and fluctuations pose the greatest challenge to making use of online education inside and outside the classroom. Internet and its supporting infrastructures in many places in Nigeria are slow and unreliable. This, in turn, could frustrate any attempt at making use of online education and e-learning technologies. Lack of basic knowledge of computer, its technologies and facilities could also prove to be a challenge as many young people up until now are yet to be computer literate. Personal interest on both the parts of lecturers and students is also a challenge. Many people are not interested in learning how to make use of technologies. This makes them resistant to changing from the ancient methods of doing things. These and others were reviewed by this paper, suggestions, and recommendations were proffered.Keywords: education, e-learning, Nigeria, tertiary institutions
Procedia PDF Downloads 19814633 Literature Review of Instructor Perceptions of the Blended Learning Approach
Authors: Syed Ahmed Hasnain
Abstract:
Instructors’ perception of blended learning plays an important role in the field of education. The literature review shows that there is a gap in research. Instructor perception of the blended learning approach has an impact on the motivation of the instructor to use technology in the classroom. The role of the student's perspective on the instructor’s perception is also important. Research also shows that instructor perceptions can be changed based on their past and present experiences with technology and blended learning. This paper draws the attention of the readers to the need for further research and contributions to studying instructor perceptions globally. Instructor perception affects the implementation of technology in the classroom, instructor-student relationship, and the class environment. Various publications, literature reviews, and articles are studied to show the importance of instructor perceptions. A lot of work has been published on student perceptions of the blended learning approach but there is a gap in research on instructor perceptions. The paper also makes recommendations for further research in the area of instructor perceptions of the blended learning approach. Institutions, administrators, senior management, and instructors can benefit from this paper.Keywords: blended learning, education, literature review, instructor perceptions
Procedia PDF Downloads 10414632 Control Flow around NACA 4415 Airfoil Using Slot and Injection
Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine
Abstract:
One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficientKeywords: CFD, control flow, lift, slot
Procedia PDF Downloads 19714631 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16714630 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15914629 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines
Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović
Abstract:
This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.Keywords: wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emmisions, finite element analysis
Procedia PDF Downloads 17814628 The Potential of Cloud Computing in Overcoming the Problems of Collective Learning
Authors: Hussah M. AlShayea
Abstract:
This study aimed to identify the potential of cloud computing, "Google Drive" in overcoming the problems of collective learning from the viewpoint of Princess Noura University students. The study included (92) students from the College of Education. To achieve the goal of the study, several steps have been taken. First, the most important problems of collective learning were identified from the viewpoint of the students. After that, a survey identifying the potential of cloud computing "Google Drive" in overcoming the problems of collective learning was distributed among the students. The study results showed that the students believe that the use of Google Drive contributed to overcoming these problems. In the light of those results, the researcher presented a set of recommendations and proposals, including: encouraging teachers and learners to employ cloud computing to overcome the problems and constraints of collective learning.Keywords: cloud computing, collective learning, Google drive, Princess Noura University
Procedia PDF Downloads 49214627 Application of the Global Optimization Techniques to the Optical Thin Film Design
Authors: D. Li
Abstract:
Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.Keywords: optical coatings, optimization, design software, thin film design
Procedia PDF Downloads 31614626 '3D City Model' through Quantum Geographic Information System: A Case Study of Gujarat International Finance Tec-City, Gujarat, India
Authors: Rahul Jain, Pradhir Parmar, Dhruvesh Patel
Abstract:
Planning and drawing are the important aspects of civil engineering. For testing theories about spatial location and interaction between land uses and related activities the computer based solution of urban models are used. The planner’s primary interest is in creation of 3D models of building and to obtain the terrain surface so that he can do urban morphological mappings, virtual reality, disaster management, fly through generation, visualization etc. 3D city models have a variety of applications in urban studies. Gujarat International Finance Tec-City (GIFT) is an ongoing construction site between Ahmedabad and Gandhinagar, Gujarat, India. It will be built on 3590000 m2 having a geographical coordinates of North Latitude 23°9’5’’N to 23°10’55’’ and East Longitude 72°42’2’’E to 72°42’16’’E. Therefore to develop 3D city models of GIFT city, the base map of the city is collected from GIFT office. Differential Geographical Positioning System (DGPS) is used to collect the Ground Control Points (GCP) from the field. The GCP points are used for the registration of base map in QGIS. The registered map is projected in WGS 84/UTM zone 43N grid and digitized with the help of various shapefile tools in QGIS. The approximate height of the buildings that are going to build is collected from the GIFT office and placed on the attribute table of each layer created using shapefile tools. The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global (30 m X 30 m) grid data is used to generate the terrain of GIFT city. The Google Satellite Map is used to place on the background to get the exact location of the GIFT city. Various plugins and tools in QGIS are used to convert the raster layer of the base map of GIFT city into 3D model. The fly through tool is used for capturing and viewing the entire area in 3D of the city. This paper discusses all techniques and their usefulness in 3D city model creation from the GCP, base map, SRTM and QGIS.Keywords: 3D model, DGPS, GIFT City, QGIS, SRTM
Procedia PDF Downloads 24714625 Applied Complement of Probability and Information Entropy for Prediction in Student Learning
Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji
Abstract:
The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory
Procedia PDF Downloads 16114624 Enhancing Students’ Language Competencies through Cooperative Learning
Authors: Raziel Felix-Aguelo
Abstract:
Language competencies refer to the knowledge and abilities to use English in four inter-related skills: Speaking, listening, reading, and writing. Cooperative learning is a type of instruction where learners are grouped together to work on an assignment, project, or task. To become competent in second language, one needs to actively use English in each of four modalities. Learning English is challenging to second language learners. Sometimes, some students feel demotivated and scared to use English during class discussions and recitations. This paper explores the students’ attitude and perception towards cooperative learning in enhancing their language competencies. The primary method for this research is case study. Thirty-two grade 9 students within a single selected class are used as sample. The instruments used in data collection were questionnaire and semi-structured interviews. The finding shows that collaborative learning activities enhance the four skills of the students. The participants consider this approach motivational as they engage and interact with others. This indicates that students develop their language competencies as they rely to one another in doing meaningful language activities.Keywords: language competencies, collaborative learning, motivation, language activities
Procedia PDF Downloads 344