Search results for: optical networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4435

Search results for: optical networks

2215 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics

Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah

Abstract:

A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.

Keywords: WSN, routing, energy, heuristic

Procedia PDF Downloads 342
2214 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: microorganism, microfluidic, total internal reflection, lab on chip

Procedia PDF Downloads 275
2213 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots

Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang

Abstract:

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.

Keywords: graphene, quantum dot, size, photoluminescence

Procedia PDF Downloads 293
2212 A Survey of Attacks and Security Requirements in Wireless Sensor Networks

Authors: Vishnu Pratap Singh Kirar

Abstract:

Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.

Keywords: wireless sensor network (WSN), wireless network attacks, wireless network security, security requirements

Procedia PDF Downloads 490
2211 A Survey on Positive Real and Strictly Positive Real Scalar Transfer Functions

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive real and strictly positive real transfer functions are important concepts in the control theory. In this paper, the results of researches in these areas are summarized. Definitions together with their graphical interpretations are mentioned. The equivalent conditions in the frequency domain and state space representations are reviewed. Their equivalent electrical networks are explained. Also, a comprehensive discussion about a difference between behavior of real part of positive real and strictly positive real transfer functions in high frequencies is presented. Furthermore, several illustrative examples are given.

Keywords: real rational transfer functions, positive realness property, strictly positive realness property, equivalent conditions

Procedia PDF Downloads 384
2210 Spectroscopic Characterization Approach to Study Ablation Time on Zinc Oxide Nanoparticles Synthesis by Laser Ablation Technique

Authors: Suha I. Al-Nassar, K. M. Adel, F. Zainab

Abstract:

This work was devoted for producing ZnO nanoparticles by pulsed laser ablation (PLA) of Zn metal plate in the aqueous environment of cetyl trimethyl ammonium bromide (CTAB) using Q-Switched Nd:YAG pulsed laser with wavelength= 1064 nm, Rep. rate= 10 Hz, Pulse duration= 6 ns and laser energy 50 mJ. Solution of nanoparticles is found stable in the colloidal form for a long time. The effect of ablation time on the optical and structure of ZnO was studied is characterized by UV-visible absorption. UV-visible absorption spectrum has four peaks at 256, 259, 265, 322 nm for ablation time (5, 10, 15, and 20 sec) respectively, our results show that UV–vis spectra show a blue shift in the presence of CTAB with decrease the ablation time and blue shift indicated to get smaller size of nanoparticles. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. Also, FTIR transmittance spectra of ZnO2 nanoparticles prepared in these states show a characteristic ZnO absorption at 435–445cm^−1.

Keywords: zinc oxide nanoparticles, CTAB solution, pulsed laser ablation technique, spectroscopic characterization

Procedia PDF Downloads 377
2209 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems

Authors: Joachim F. Sartor

Abstract:

According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.

Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage

Procedia PDF Downloads 151
2208 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 129
2207 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets

Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid

Abstract:

This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.

Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.

Procedia PDF Downloads 448
2206 NiO-CeO2 Nano-Catalyst for the Removal of Priority Organic Pollutants from Wastewater through Catalytic Wet Air Oxidation at Mild Conditions

Authors: Anushree, Chhaya Sharma, Satish Kumar

Abstract:

Catalytic wet air oxidation (CWAO) is normally carried out at elevated temperature and pressure. This work investigates the potential of NiO-CeO2 nano-catalyst in CWAO of paper industry wastewater under milder operating conditions of 90 °C and 1 atm. The NiO-CeO2 nano-catalysts were synthesized by a simple co-precipitation method and characterized by X-ray diffraction (XRD), before and after use, in order to study any crystallographic change during experiment. The extent of metal-leaching from the catalyst was determined using the inductively coupled plasma optical emission spectrometry (ICP-OES). The catalytic activity of nano-catalysts was studied in terms of total organic carbon (TOC), adsorbable organic halides (AOX) and chlorophenolics (CHPs) removal. Interestingly, mixed oxide catalysts exhibited higher activity than the corresponding single-metal oxides. The maximum removal efficiency was achieved with Ce40Ni60 catalyst. The results indicate that the CWAO process is efficient in removing the priority organic pollutants from wastewater, as it exhibited up to 59% TOC, 55% AOX, and 54 % CHPs removal.

Keywords: catalysis, nano-materials, NiO-CeO2, paper mill, wastewater, wet air oxidation

Procedia PDF Downloads 252
2205 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 121
2204 Exploring Barriers to Social Innovation: Swedish Experiences from Nine Research Circles

Authors: Claes Gunnarsson, Karin Fröding, Nina Hasche

Abstract:

Innovation is a necessity for the evolution of societies and it is also a driving force in human life that leverages value creation among cross-sector participants in various network arrangements. Social innovations can be characterized as the creation and implementation of a new solution to a social problem, which is more effective and sustainable than existing solutions in terms of improvement of society’s conditions and in particular social inclusion processes. However, barriers exist which may restrict the potential of social innovations to live up to its promise as a societal welfare promoting driving force. The literature points at difficulties in tackling social problems primarily related to problem complexity, access to networks, and lack of financial muscles. Further research is warranted at detailed at detail clarification of these barriers, also connected to recognition of the interplay between institutional logics on the development of cross-sector collaborations in networks and the organizing processes to achieve innovation barrier break-through. There is also a need to further elaborate how obstacles that spur a difference between the actual and desired state of innovative value creating service systems can be overcome. The purpose of this paper is to illustrate barriers to social innovations, based on qualitative content analysis of 36 dialogue-based seminars (i.e. research circles) with nine Swedish focus groups including more than 90 individuals representing civil society organizations, private business, municipal offices, and politicians; and analyze patterns that reveal constituents of barriers to social innovations. The paper draws on central aspects of innovation barriers as discussed in the literature and analyze barriers basically related to internal/external and tangible/intangible characteristics. The findings of this study are that existing institutional structures highly influence the transformative potential of social innovations, as well as networking conditions in terms of building a competence-propelled strategy, which serves as an offspring for overcoming barriers of competence extension. Both theoretical and practical knowledge will contribute to how policy-makers and SI-practitioners can facilitate and support social innovation processes to be contextually adapted and implemented across areas and sectors.

Keywords: barriers, research circles, social innovation, service systems

Procedia PDF Downloads 257
2203 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, scanning electron microscopy (SEM)

Procedia PDF Downloads 164
2202 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare

Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.

Abstract:

Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.

Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor

Procedia PDF Downloads 128
2201 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery

Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado

Abstract:

Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.

Keywords: biometrics, deep learning, handwriting, signature forgery

Procedia PDF Downloads 82
2200 Analysis of the IEEE 802.15.4 MAC Parameters to Achive Lower Packet Loss Rates

Authors: Imen Bouazzi

Abstract:

The IEEE-802.15.4 standard utilizes the CSMA-CA mechanism to control nodes access to the shared wireless communication medium. It is becoming the popular choice for various applications of surveillance and control used in wireless sensor network (WSN). The benefit of this standard is evaluated regarding of the packet loss probability who depends on the configuration of IEEE 802.15.4 MAC parameters and the traffic load. Our exigency is to evaluate the effects of various configurable MAC parameters on the performance of beaconless IEEE 802.15.4 networks under different traffic loads, static values of IEEE 802.15.4 MAC parameters (macMinBE, macMaxCSMABackoffs, and macMaxFrame Retries) will be evaluated. To performance analysis, we use ns-2[2] network simulator.

Keywords: WSN, packet loss, CSMA/CA, IEEE-802.15.4

Procedia PDF Downloads 339
2199 Step Height Calibration Using Hamming Window: Band-Pass Filter

Authors: Dahi Ghareab Abdelsalam Ibrahim

Abstract:

Calibration of step heights with high accuracy is needed for many applications in the industry. In general, step height consists of three bands: pass band, transition band (roll-off), and stop band. Abdelsalam used a convolution of the transfer functions of both Chebyshev type 2 and elliptic filters with WFF of the Fresnel transform in the frequency domain for producing a steeper roll-off with the removal of ripples in the pass band- and stop-bands. In this paper, we used a new method based on the Hamming window: band-pass filter for calibration of step heights in terms of perfect adjustment of pass-band, roll-off, and stop-band. The method is applied to calibrate a nominal step height of 40 cm. The step height is measured first by asynchronous dual-wavelength phase-shift interferometry. The measured step height is then calibrated by the simulation of the Hamming window: band-pass filter. The spectrum of the simulated band-pass filter is simulated at N = 881 and f0 = 0.24. We can conclude that the proposed method can calibrate any step height by adjusting only two factors which are N and f0.

Keywords: optical metrology, step heights, hamming window, band-pass filter

Procedia PDF Downloads 81
2198 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 86
2197 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 90
2196 Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+ (Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11-SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium-mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.

Keywords: photoluminescence, silicon nanocrystals, erbium, Raman spectroscopy

Procedia PDF Downloads 363
2195 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 150
2194 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications

Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita

Abstract:

Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.

Keywords: microbioreactor, cell-culture, fermentation, microfluidics

Procedia PDF Downloads 413
2193 Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement

Authors: H. Akbari Khorami, P. Wild, N. Djilali

Abstract:

This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.

Keywords: chemical deposition, fiber-optic sensor, hydrogen peroxide vapor, prussian blue

Procedia PDF Downloads 356
2192 Photoresponse of Epitaxial GaN Films Grown by Plasma-Assisted Molecular Beam Epitaxy

Authors: Nisha Prakash, Kritika Anand, Arun Barvat, Prabir Pal, Sonachand Adhikari, Suraj P. Khanna

Abstract:

Group-III nitride semiconductors (GaN, AlN, InN and their ternary and quaternary compounds) have attracted a great deal of attention for the development of high-performance Ultraviolet (UV) photodetectors. Any midgap defect states in the epitaxial grown film have a direct influence on the photodetectors responsivity. The proportion of the midgap defect states can be controlled by the growth parameters. To study this we have grown high quality epitaxial GaN films on MOCVD- grown GaN template using plasma-assisted molecular beam epitaxy (PAMBE) with different growth parameters. Optical and electrical properties of the films were characterized by room temperature photoluminescence and photoconductivity measurements, respectively. The observed persistent photoconductivity behaviour is proportional to the yellow luminescence (YL) and the absolute responsivity has been found to decrease with decreasing YL. The results will be discussed in more detail later.

Keywords: gallium nitride, plasma-assisted molecular beam epitaxy, photoluminescence, photoconductivity, persistent photoconductivity, yellow luminescence

Procedia PDF Downloads 317
2191 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing

Authors: Andrew Hall, Paul Clarkson

Abstract:

Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.

Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change

Procedia PDF Downloads 205
2190 Critical Success Factors for Implementation of E-Supply Chain Management

Authors: Mehrnoosh Askarizadeh

Abstract:

Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.

Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource

Procedia PDF Downloads 409
2189 Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit

Authors: Rawaa Maher, Ahmed Allam, Haruichi Kanaya, Adel B. Abdelrahman

Abstract:

In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement.

Keywords: internet of things, integrated rectenna, rectenna, RF energy harvesting, wireless sensor networks(WSN)

Procedia PDF Downloads 180
2188 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students

Authors: J. K. Alhassan, C. S. Actsu

Abstract:

This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.

Keywords: academic performance, artificial neural network, prediction, students

Procedia PDF Downloads 466
2187 Research on Territorial Ecological Restoration in Mianzhu City, Sichuan, under the Dual Evaluation Framework

Authors: Wenqian Bai

Abstract:

Background: In response to the post-pandemic directives of Xi Jinping concerning the new era of ecological civilization, China has embarked on ecological restoration projects across its territorial spaces. This initiative faces challenges such as complex evaluation metrics and subpar informatization standards. Methodology: This research focuses on Mianzhu City, Sichuan Province, to assess its resource and environmental carrying capacities and the appropriateness of land use for development from ecological, agricultural, and urban perspectives. The study incorporates a range of spatial data to evaluate factors like ecosystem services (including water conservation, soil retention, and biodiversity), ecological vulnerability (addressing issues like soil erosion and desertification), and resilience. Utilizing the Minimum Cumulative Resistance model along with the ‘Three Zones and Three Lines’ strategy, the research maps out ecological corridors and significant ecological networks. These frameworks support the ecological restoration and environmental enhancement of the area. Results: The study identifies critical ecological zones in Mianzhu City's northwestern region, highlighting areas essential for protection and particularly crucial for water conservation. The southeastern region is categorized as a generally protected ecological zone with respective ratings for water conservation functionality and ecosystem resilience. The research also explores the spatial challenges of three ecological functions and underscores the substantial impact of human activities, such as mining and agricultural expansion, on the ecological baseline. The proposed spatial arrangement for ecological restoration, termed ‘One Mountain, One Belt, Four Rivers, Five Zones, and Multiple Corridors’, strategically divides the city into eight major restoration zones, each with specific tasks and projects. Conclusion: With its significant ‘mountain-plain’ geography, Mianzhu City acts as a crucial ecological buffer for the Yangtze River's upper reaches. Future development should focus on enhancing ecological corridors in agriculture and urban areas, controlling soil erosion, and converting farmlands back to forests and grasslands to foster ecosystem rehabilitation.

Keywords: ecological restoration, resource and environmental carrying capacity, land development suitability, ecosystem services, ecological vulnerability, ecological networks

Procedia PDF Downloads 39
2186 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 36