Search results for: capability approach
12677 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj
Authors: Marziyeh Khavari
Abstract:
In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.Keywords: climate change, neural network, hazelnut, global warming
Procedia PDF Downloads 13212676 Sovereign Debt Restructuring: A Study of the Inadequacies of the Contractual Approach
Authors: Salamah Ansari
Abstract:
In absence of a comprehensive international legal regime for sovereign debt restructuring, majority of the complications arising from sovereign debt restructuring are frequently left to the uncertain market forces. The resort to market forces for sovereign debt restructuring has led to a phenomenal increase in litigations targeting assets of defaulting sovereign nations, internationally across jurisdictions with the first major wave of lawsuits against sovereigns in the 1980s with the Latin American crisis. Recent experiences substantiate that majority of obstacles faced during sovereign debt restructuring process are caused by inefficient creditor coordination and collective action problems. Collective action problems manifest as grab race, rush to exits, holdouts, the free rider problem and the rush to the courthouse. On defaulting, for a nation to successfully restructure its debt, all the creditors involved must accept some reduction in the value of their claims. As a single holdout creditor has the potential to undermine the restructuring process, hold-out creditors are snowballing with the increasing probability of earning high returns through litigations. This necessitates a mechanism to avoid holdout litigations and reinforce collective action on the part of the creditor. This can be done either through a statutory reform or through market-based contractual approach. In absence of an international sovereign bankruptcy regime, the impetus is mostly on inclusion of collective action clauses in debt contracts. The preference to contractual mechanisms vis- a vis a statutory approach can be explained with numerous reasons, but that's only part of the puzzle in trying to understand the economics of the underlying system. The contractual approach proposals advocate the inclusion of certain clauses in the debt contract for an orderly debt restructuring. These include clauses such as majority voting clauses, sharing clauses, non- acceleration clauses, initiation clauses, aggregation clauses, temporary stay on litigation clauses, priority financing clauses, and complete revelation of relevant information. However, voluntary market based contractual approach to debt workouts has its own complexities. It is a herculean task to enshrine clauses in debt contracts that are detailed enough to create an orderly debt restructuring mechanism while remaining attractive enough for creditors. Introduction of collective action clauses into debt contracts can reduce the barriers in efficient debt restructuring and also have the potential to improve the terms on which sovereigns are able to borrow. However, it should be borne in mind that such clauses are not a panacea to the huge institutional inadequacy that persists and may lead to worse restructuring outcomes.Keywords: sovereign debt restructuring, collective action clauses, hold out creditors, litigations
Procedia PDF Downloads 15612675 Quasiperiodic Magnetic Chains as Spin Filters
Authors: Arunava Chakrabarti
Abstract:
A one-dimensional chain of magnetic atoms, representative of a quantum gas in an artificial quasi-periodic potential and modeled by the well-known Aubry-Andre function and its variants are studied in respect of its capability of working as a spin filter for arbitrary spins. The basic formulation is explained in terms of a perfectly periodic chain first, where it is shown that a definite correlation between the spin S of the incoming particles and the magnetic moment h of the substrate atoms can open up a gap in the energy spectrum. This is crucial for a spin filtering action. The simple one-dimensional chain is shown to be equivalent to a 2S+1 strand ladder network. This equivalence is exploited to work out the condition for the opening of gaps. The formulation is then applied for a one-dimensional chain with quasi-periodic variation in the site potentials, the magnetic moments and their orientations following an Aubry-Andre modulation and its variants. In addition, we show that a certain correlation between the system parameters can generate absolutely continuous bands in such systems populated by Bloch like extended wave functions only, signaling the possibility of a metal-insulator transition. This is a case of correlated disorder (a deterministic one), and the results provide a non-trivial variation to the famous Anderson localization problem. We have worked within a tight binding formalism and have presented explicit results for the spin half, spin one, three halves and spin five half particles incident on the magnetic chain to explain our scheme and the central results.Keywords: Aubry-Andre model, correlated disorder, localization, spin filter
Procedia PDF Downloads 35612674 The Effects of Religiosity and Spiritual Intelligence on the Performance of Accountants in Ghana
Authors: Wisdom Dordudnu, George M. Y. Owusu, Samuel N. Y. Simpson
Abstract:
The recent failures of many corporate giants have generated intense research interest in the factors that influence accountants’ job performance. Against the backdrop that these factors also create an enabling environment for success at the work place, this study contributes to literature on job performance of accountants by exploring the impact of two psycho-spiritual factors: religiosity and spiritual intelligence on job performance of accountants in Ghana. The study employs a survey approach using questionnaires as the principal means of data collection to elicit responses from accountants working in the 222 certified firms of Institute of Chartered Accountants Ghana (ICAG). A structural equation modeling-based approach is employed to examine the relationship among the study constructs. Results of this study indicate that there is a positive relationship between these factors and accountants’ performance. It is expected that this study provides strong evidence and highlight the need for specific action from managers to look critically at the non-material aspect of accountants in accounting firms.Keywords: job performance, psycho-spiritual, religiosity, spiritual intelligence
Procedia PDF Downloads 30012673 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 12912672 Representing a Methodology for Refinement of Strategic Objectives in Strategy Map Establishment: Combining Quality Function Deployment and Fuzzy Screening
Authors: Bijan Nahavandi, Navid Jafarinejad, Somayeh Mehrafzad
Abstract:
Strategy maps represent the way of value creation in in each organization. Nowadays, implementation of strategy is the main concern for all organizations. Strategy map establishment is the start-up point of strategy implementation and this shows the critical importance of this concept. After some years past since emergence of strategy map, there are some shortcomings in its methodology that frequently quoted by many of researchers. One of these shortcomings is the shortage of a mechanism for refinement of objectives candidate for entrance to map. Organizations in practice have obsession and avidity to determine more number of objectives in strategy map. This study wants to represent a step by step approach to help obviate this problem using quality function deployment (QFD) as a helpful tool and fuzzy screening method. Finally, represented approach applies in a practical case and conclusions have been explained.Keywords: balanced scorecard, fuzzy screening, house of strategic objectives (HoSO), quality function deployment, strategy map
Procedia PDF Downloads 35312671 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 13712670 Young People, Well-Being and Risk-Taking: Doing Gender in Relation to Health and Heavy Drinking
Authors: Jukka Torronen
Abstract:
Introduction: Alcohol consumption and health are areas where gender binaries have persisted. By intoxication, men have displayed their masculinity as strong, while matters of health have formed a feminine undertaking. However, in recent years young people’s alcohol consumption has declined and been challenged by competing activities, including the rising health trend. This makes the comparison of young people’s masculinities and femininities in health and heavy drinking an important case to study. Methods: The data consists of semi-structured interviews about alcohol, health, and leisure activities among young people aged between 15 and 19 (N=56). By drawing on Butler’s work on “gender as performative” and Connell’s understanding of gendered identities as “configurations of practices,” the paper analyzes how the interviewees are doing masculinities and femininities in relation to health and heavy drinking, and how their gender performances are dichotomous, naturalized and contested. Results: The interviewees approach health from two perspectives, which are called “social health” and “physical health” approaches. They are both gendered. Especially in the “social health” approach, in which intoxication and risk-taking are used to increase well-being, the interviewees perform stereotypical gender binaries. The interviewees’ gendered performances in the “physical health” approach show more variability and are more reflective and critical. In contrast to intoxication, in relation to which the interviewees perform biologically driven gender binaries, they perform culturally driven genders in relation to health. Conclusions: Health seems to provide for the interviewees a field in which they feel more liberated to perform flexible and alternative genders.Keywords: young people, decline in drinking, qualitative interviews, gender, health, risk-taking
Procedia PDF Downloads 13412669 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.Keywords: topology optimization, BESO method, p-norm, fatigue constraint
Procedia PDF Downloads 29512668 Organizational Culture and Its Internalization of Change in the Manufacturing and Service Sector Industries in India
Authors: Rashmi Uchil, A. H. Sequeira
Abstract:
Post-liberalization era in India has seen an unprecedented growth of mergers, both domestic as well as cross-border deals. Indian organizations have slowly begun appreciating this inorganic method of growth. However, all is not well as is evidenced in the lowering value creation of organizations after mergers. Several studies have identified that organizational culture is one of the key factors that affects the success of mergers. But very few studies have been attempted in this realm in India. The current study attempts to identify the factors in the organizational culture variable that may be unique to India. It also focuses on the difference in the impact of organizational culture on merger of organizations in the manufacturing and service sectors in India. The study uses a mixed research approach. An exploratory research approach is adopted to identify the variables that constitute organizational culture specifically in the Indian scenario. A few hypotheses were developed from the identified variables and tested to arrive at the Grounded Theory. The Grounded Theory approach used in the study, attempts to integrate the variables related to organizational culture. Descriptive approach is used to validate the developed grounded theory with a new empirical data set and thus test the relationship between the organizational culture variables and the success of mergers. Empirical data is captured from merged organizations situated in major cities of India. These organizations represent significant proportions of the total number of organizations which have adopted mergers. The mix of industries included software, banking, manufacturing, pharmaceutical and financial services. Mixed sampling approach was adopted for this study. The first phase of sampling was conducted using the probability method of stratified random sampling. The study further used the non-probability method of judgmental sampling. Adequate sample size was identified for the study which represents the top, middle and junior management levels of the organizations that had adopted mergers. Validity and reliability of the research instrument was ensured with appropriate tests. Statistical tools like regression analysis, correlation analysis and factor analysis were used for data analysis. The results of the study revealed a strong relationship between organizational culture and its impact on the success of mergers. The study also revealed that the results were unique to the extent that they highlighted a marked difference in the manner of internalization of change of organizational culture after merger by the organizations in the manufacturing sector. Further, the study reveals that the organizations in the service sector internalized the changes at a slower rate. The study also portrays the industries in the manufacturing sector as more proactive and can contribute to a change in the perception of the said organizations.Keywords: manufacturing industries, mergers, organizational culture, service industries
Procedia PDF Downloads 29712667 Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control
Authors: Ruben Lopez-Rodriguez
Abstract:
In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy.Keywords: microgrids, mixed logical dynamical systems, mixed-integer optimization, model predictive control
Procedia PDF Downloads 5312666 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio
Authors: Ehsan Atefi, Michael Grigware
Abstract:
Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning
Procedia PDF Downloads 12612665 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study
Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed
Abstract:
This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.Keywords: direct approach, impedance function, soil-structure interaction, substructure approach
Procedia PDF Downloads 11712664 Determining Antecedents of Employee Turnover: A Study on Blue Collar vs White Collar Workers on Marco Level
Authors: Evy Rombaut, Marie-Anne Guerry
Abstract:
Predicting voluntary turnover of employees is an important topic of study, both in academia and industry. Researchers try to uncover determinants for a broader understanding and possible prevention of turnover. In the current study, we use a data set based approach to reveal determinants for turnover, differing for blue and white collar workers. Our data set based approach made it possible to study actual turnover for more than 500000 employees in 15692 Belgian corporations. We use logistic regression to calculate individual turnover probabilities and test the goodness of our model with the AUC (area under the ROC-curve) method. The results of the study confirm the relationship of known determinants to employee turnover such as age, seniority, pay and work distance. In addition, the study unravels unknown and verifies known differences between blue and white collar workers. It shows opposite relationships to turnover for gender, marital status, the number of children, nationality, and pay.Keywords: employee turnover, blue collar, white collar, dataset analysis
Procedia PDF Downloads 29112663 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 7312662 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 22612661 An Assessment of Factors Affecting the Cost and Time Performance of Subcontractors
Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola,
Abstract:
This paper is an assessment of factors influencing the cost and time performance of subcontractors and the need for effective performance of subcontractors at the project sites. The factors influencing the performance of subcontractors are grouped, similar to those identified with the project or an organization and on another hand, there are significant factors influencing the performance of the subcontractors. These factors incorporate management level leadership, time required to complete the project, profit, staff capability/expertise, reputation, installment method, organization history, and project procurement method strategy, security, bidding technique, insurance, bond and relationship with the major contractors. The factors influencing the management of subcontractors in building development projects includes performance of significant past projects, standard of workmanship, consistence with guidelines, regular payment to labourers, adherence to program, regularity and viability of communication with main contractor, adherence to subcontract necessities. Other factors comprise adherence to statutory environmental regulations, number of experienced sites administrative staff, inspection and maintenance of good workplace, number of artisans and workers, quality of as-built and shop drawings and ability to carry out the quantity of work and so on. This study also aimed to suggest a way forward to improve the performance of subcontractors which is the reason for exceeding budget at the project sites. To carry out this study, a questionnaire was drafted to derive information on the causes of low performance of subcontractors and the implication to cost.Keywords: performance, contractor, subcontractors, construction
Procedia PDF Downloads 7612660 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 17412659 The Formation of Mutual Understanding in Conversation: An Embodied Approach
Authors: Haruo Okabayashi
Abstract:
The mutual understanding in conversation is very important for human relations. This study investigates the mental function of the formation of mutual understanding between two people in conversation using the embodied approach. Forty people participated in this study. They are divided into pairs randomly. Four conversation situations between two (make/listen to fun or pleasant talk, make/listen to regrettable talk) are set for four minutes each, and the finger plethysmogram (200 Hz) of each participant is measured. As a result, the attractors of the participants who reported “I did not understand my partner” show the collapsed shape, which means the fluctuation of their rhythm is too small to match their partner’s rhythm, and their cross correlation is low. The autonomic balance of both persons tends to resonate during conversation, and both LLEs tend to resonate, too. In human history, in order for human beings as weak mammals to live, they may have been with others; that is, they have brought about resonating characteristics, which is called self-organization. However, the resonant feature sometimes collapses, depending on the lifestyle that the person was formed by himself after birth. It is difficult for people who do not have a lifestyle of mutual gaze to resonate their biological signal waves with others’. These people have features such as anxiety, fatigue, and confusion tendency. Mutual understanding is thought to be formed as a result of cooperation between the features of self-organization of the persons who are talking and the lifestyle indicated by mutual gaze. Such an entanglement phenomenon is called a nonlinear relation. By this research, it is found that the formation of mutual understanding is expressed by the rhythm of a biological signal showing a nonlinear relationship.Keywords: embodied approach, finger plethysmogram, mutual understanding, nonlinear phenomenon
Procedia PDF Downloads 26612658 A “Best Practice” Model for Physical Education in the BRICS Countries
Authors: Vasti Oelofse, Niekie van der Merwe, Dorita du Toit
Abstract:
This study addresses the need for a unified best practice model for Physical Education across BRICS nations, as current research primarily offers individual country recommendations. Drawing on relevant literature within the framework of Bronfenbrenner’s Ecological Systems Theory, as well as data from open-ended questionnaires completed by Physical Education experts from the BRICS countries, , the study develops a best practice model based on identified challenges and effective practices in Physical Education. A model is proposed that incorporates flexible and resource-efficient strategies tailored to address PE challenges specific to these countries, enhancing outcomes for learners, empowering teachers, and fostering systemic collaboration among BRICS members. The proposed model comprises six key areas: “Curriculum and policy requirements”, “General approach”, “Theoretical basis”, “Strategies for presenting content”, “Teacher training”, and “Evaluation”. The “Strategies for presenting program content” area addresses both well-resourced and poorly resourced schools, adapting curriculum, teaching strategies, materials, and learner activities for varied socio-economic contexts. The model emphasizes a holistic approach to learner development, engaging environments, and continuous teacher training. A collaborative approach among BRICS countries, focusing on shared best practices and continuous improvement, is vital for the model's successful implementation, enhancing Physical Education programs and outcomes across these nations.Keywords: BRICS countries, physical education, best practice model, ecological systems theory
Procedia PDF Downloads 1212657 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows
Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari
Abstract:
The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids
Procedia PDF Downloads 13012656 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making
Authors: Mohammad Sadeghi, Mahdieh Saniee
Abstract:
Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.Keywords: rationality, decision-making process, policymaking, development
Procedia PDF Downloads 11512655 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation
Authors: Maria Lazari, Lorenzo Sanavia
Abstract:
Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity
Procedia PDF Downloads 22512654 Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology
Authors: Lalnuntluanga Hmar, Hardik Vyas
Abstract:
Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent.Keywords: borate, crosslinker, Guar, Hydroxypropyl Guar (HPG), rheology
Procedia PDF Downloads 20212653 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor
Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui
Abstract:
This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer
Procedia PDF Downloads 73112652 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems
Procedia PDF Downloads 24312651 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor
Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher
Abstract:
The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application
Procedia PDF Downloads 19212650 Wax Patterns for Integrally Cast Rotors/Stators of Aeroengine Gas Turbines
Authors: Pradyumna R., Sridhar S., A. Satyanarayana, Alok S. Chauhan, Baig M. A. H.
Abstract:
Modern turbine engines for aerospace applications need precision investment cast components such as integrally cast rotors and stators, for their hot end turbine stages. Traditionally, these turbines are used as starter engines. In recent times, such engines are also used for strategic missile applications. The rotor/stator castings consist of a central hub (shrouded in some designs) over which a number of aerofoil shaped blades are located. Since these components cannot be machined, investment casting is the only available route for manufacture and hence stringent dimensional aerospace quality has to be in-built in the casting process itself. In the process of investment casting, pattern generation by injection of wax into dedicated dies/moulds is the first critical step. Traditional approach deals in producing individual blades with hub/shroud features through wax injection and assembly of a set of such injected patterns onto a dedicated and precisely manufactured fixture to wax-weld and generate an integral wax pattern, a process known as the ‘segmental approach’. It is possible to design a single-injection die with retractable metallic inserts in the case of untwisted blades of stator patterns without the shroud. Such an approach is also possible for twisted blades of rotors with highly complex design of inter-blade inserts and retraction mechanisms. DMRL has for long established methods and procedures for the above to successfully supply precision castings for various defence related projects. In recent times, urea based soluble insert approach has also been successfully applied to overcome the need to design and manufacture a precision assembly fixture, leading to substantial reduction in component development times. Present paper deals in length various approaches tried and established at DMRL to generate precision wax patterns for aerospace quality turbine rotors and stators. In addition to this, the importance of simulation in solving issues related to wax injection is also touched upon.Keywords: die/mold and fixtures, integral rotor/stator, investment casting, wax patterns, simulation
Procedia PDF Downloads 34212649 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation
Authors: Tanwi Priya, Brijesh Kumar Mishra
Abstract:
Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices
Procedia PDF Downloads 27812648 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports
Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani
Abstract:
In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method
Procedia PDF Downloads 294