Search results for: shear parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3256

Search results for: shear parameter

1066 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali

Abstract:

This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.

Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control

Procedia PDF Downloads 147
1065 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks

Authors: Chothmal

Abstract:

In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.

Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces

Procedia PDF Downloads 249
1064 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
1063 Further Study of Mechanism of Contrasting Charge Transport Properties for Phenyl and Thienyl Substituent Organic Semiconductors

Authors: Yanan Zhu

Abstract:

Based on the previous work about the influence mechanism of the mobility difference of phenyl and thienyl substituent semiconductors, we have made further exploration towards to design high-performance organic thin-film transistors. The substituent groups effect plays a significant role in materials properties and device performance as well. For the theoretical study, simulation of materials property and crystal packing can supply scientific guidance for materials synthesis in experiments. This time, we have taken the computational methods to design a new material substituent with furan groups, which are the potential to be used in organic thin-film transistors and organic single-crystal transistors. The reorganization energy has been calculated and much lower than 2,6-diphenyl anthracene (DPAnt), which performs large mobility as more than 30 cm²V⁻¹s⁻¹. Moreover, the other important parameter, charge transfer integral is larger than DPAnt, which suggested the furan substituent material may get a much better charge transport data. On the whole, the mechanism investigation based on phenyl and thienyl assisted in designing novel materials with furan substituent, which is predicted to be an outperformed organic field-effect transistors.

Keywords: theoretical calculation, mechanism, mobility, organic transistors

Procedia PDF Downloads 137
1062 Comparison of the Existing Damage Indices in Steel Moment-Resisting Frame Structures

Authors: Hamid Kazemi, Abbasali Sadeghi

Abstract:

Assessment of seismic behavior of frame structures is just done for evaluating life and financial damages or lost. The new structural seismic behavior assessment methods have been proposed, so it is necessary to define a formulation as a damage index, which the damage amount has been quantified and qualified. In this paper, four new steel moment-resisting frames with intermediate ductility and different height (2, 5, 8, and 12-story) with regular geometry and simple rectangular plan were supposed and designed. The three existing groups’ damage indices were studied, each group consisting of local index (Drift, Maximum Roof Displacement, Banon Failure, Kinematic, Banon Normalized Cumulative Rotation, Cumulative Plastic Rotation and Ductility), global index (Roufaiel and Meyer, Papadopoulos, Sozen, Rosenblueth, Ductility and Base Shear), and story (Banon Failure and Inter-story Rotation). The necessary parameters for these damage indices have been calculated under the effect of far-fault ground motion records by Non-linear Dynamic Time History Analysis. Finally, prioritization of damage indices is defined based on more conservative values in terms of more damageability rate. The results show that the selected damage index has an important effect on estimation of the damage state. Also, failure, drift, and Rosenblueth damage indices are more conservative indices respectively for local, story and global damage indices.

Keywords: damage index, far-fault ground motion records, non-linear time history analysis, SeismoStruct software, steel moment-resisting frame

Procedia PDF Downloads 292
1061 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 148
1060 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways

Authors: Vinayak Malaghan, Digvijay Pawar

Abstract:

Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.

Keywords: operating speed, design consistency, continuous speed profile data, day and night time

Procedia PDF Downloads 157
1059 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress

Procedia PDF Downloads 164
1058 Microstracture of Iranian Processed Cheese

Authors: R. Ezzati, M. Dezyani, H. Mirzaei

Abstract:

The effects of the concentration of trisodium citrate (TSC) emulsifying salt (0.25 to 2.75%) and holding time (0 to 20 min) on the textural, rheological, and microstructural properties of Iranian Processed Cheese Cheddar cheese were studied using a central composite rotatable design. The loss tangent parameter (from small amplitude oscillatory rheology), extent of flow, and melt area (from the Schreiber test) all indicated that the meltability of process cheese decreased with increased concentration of TSC and that holding time led to a slight reduction in meltability. Hardness increased as the concentration of TSC increased. Fluorescence micrographs indicated that the size of fat droplets decreased with an increase in the concentration of TSC and with longer holding times. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is due to residual colloidal calcium phosphate, decreased as the concentration of TSC increased. The soluble phosphate content increased as concentration of TSC increased. However, the insoluble Ca decreased with increasing concentration of TSC. The results of this study suggest that TSC chelated Ca from colloidal calcium phosphate and dispersed casein; the citrate-Ca complex remained trapped within the process cheese matrix. Increasing the concentration of TSC helped to improve fat emulsification and casein dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, cheddar cheese, emulsifying salt, rheology

Procedia PDF Downloads 443
1057 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering

Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare

Abstract:

This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.

Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass

Procedia PDF Downloads 456
1056 Functionality Based Composition of Web Services to Attain Maximum Quality of Service

Authors: M. Mohemmed Sha Mohamed Kunju, Abdalla A. Al-Ameen Abdurahman, T. Manesh Thankappan, A. Mohamed Mustaq Ahmed Hameed

Abstract:

Web service composition is an effective approach to complete the web based tasks with desired quality. A single web service with limited functionality is inadequate to execute a specific task with series of action. So, it is very much required to combine multiple web services with different functionalities to reach the target. Also, it will become more and more challenging, when these services are from different providers with identical functionalities and varying QoS, so while composing the web services, the overall QoS is considered to be the major factor. Also, it is not true that the expected QoS is always attained when the task is completed. A single web service in the composed chain may affect the overall performance of the task. So care should be taken in different aspects such as functionality of the service, while composition. Dynamic and automatic service composition is one of the main option available. But to achieve the actual functionality of the task, quality of the individual web services are also important. Normally the QoS of the individual service can be evaluated by using the non-functional parameters such as response time, throughput, reliability, availability, etc. At the same time, the QoS is not needed to be at the same level for all the composed services. So this paper proposes a framework that allows composing the services in terms of QoS by setting the appropriate weight to the non-functional parameters of each individual web service involved in the task. Experimental results show that the importance given to the non-functional parameter while composition will definitely improve the performance of the web services.

Keywords: composition, non-functional parameters, quality of service, web service

Procedia PDF Downloads 333
1055 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 203
1054 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: Pushpendra S. Bharti, S. Maheshwari

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization

Procedia PDF Downloads 354
1053 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes

Authors: J. J. Vargas, N. Prieto, L. A. Toro

Abstract:

Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.

Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method

Procedia PDF Downloads 373
1052 Gender Difference in the Association between Different Components of the Metabolic Syndrome and Vitamin D Levels in Saudi Patients

Authors: Amal Baalash, Shazia Mukaddam, M. Adel El-Sayed

Abstract:

Background: Several studies have suggested non-skeletal effects of vitamin D and linked its deficiency with features of many chronic conditions. In this study, We aimed to investigate the relationship between vitamin D levels and different components of the metabolic syndrome in male and female Saudi patients. Methods: the study population consisted of 111 patients with metabolic syndrome (71 females and 40 males) aged 37-63 years enrolled from patients attending the internal medicine outpatient clinics of King Fahad Medical City. The parameters for diagnosis of the metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) were measured, which included waist circumference, TG, HDL-C, Blood pressure and fasting blood glucose (FBS). The association between each parameter and serum 25-hydroxyvitamin D (25(OH) D) was studied in both male and female patients separately. Results: in male patients, 25(OH) D levels were inversely associated with FBS and TG and positively associated with HDL-C and diastolic blood pressure, With highest association with the HDL-C levels. On the other hand 25(OH) D, Showed no significant association with any of the measured metabolic syndrome parameters in female patients. Conclusion: in Saudi patients with metabolic syndrome, the association between the parameters of metabolic syndrome and the levels of 25 (OH) D is more pronounced in males rather than females.

Keywords: gender, metabolic syndrome, Saudi patients, vitamin D

Procedia PDF Downloads 374
1051 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 343
1050 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 269
1049 Optimal Evaluation of Weather Risk Insurance for Wheat

Authors: Slim Amami

Abstract:

A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, database, meteorological factors, production model, optimal price

Procedia PDF Downloads 222
1048 Development of Fuzzy Logic Control Ontology for E-Learning

Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof

Abstract:

Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.

Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content

Procedia PDF Downloads 299
1047 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning

Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang

Abstract:

This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.

Keywords: acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback

Procedia PDF Downloads 179
1046 A Comparative Study on Achievement Motivation and Sports Competition Anxiety among the Students of Different Tier of Academic Hierarchy

Authors: Nitai Biswas, Prasenjit Kapas, Arumay Jana, Asish Paul

Abstract:

Introduction: Motivation is basic drive for all kinds of action. It has direct influence on academic achievement and sports performance that builds urge to incentive values of success. In other words, it can be defined as the need for success to attain excellence. Anxiety in pre competition especially in sports formulates positive inward settings in mind to overcome the challenge. There is a tendency to perceive competitive situations as some threatening issues and to respond them with feelings of apprehension and tension. Aim: Aim of the study was to compare the achievement motivation and competition anxiety among three different classes of students. Methods and Materials: To conduct the study the researcher has taken 131 male subjects from three different classes as Extra Department, Bachelor of Physical Education-I and Master of Physical EducationII, aged 19-28 years. Achievement motivation and sports competition anxiety were measured by the questionnaire. To analyze the data mean, standard deviation for each parameter as descriptive statistics and one way analysis of variance as inferential statistics were employed. Results: From the result of the study in achievement motivation (p ≥ 0.05) and competition anxiety (p ≥ 0.05) no significant differences were found among the said three groups. Conclusion: The study concluded that all three groups had almost the same state of achievement motivation and sports competition anxiety.

Keywords: anxiety, sports psychology, sports competition anxiety, achievement motivation, academic hierarchy, E.D., B.P.Ed., M.P.Ed

Procedia PDF Downloads 145
1045 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network

Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir

Abstract:

Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.

Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.

Procedia PDF Downloads 385
1044 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 300
1043 Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling

Authors: Buğra Sinmez

Abstract:

In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection.

Keywords: geosynthetics, geogrid, railway, transportation

Procedia PDF Downloads 181
1042 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes

Authors: Mohamed Osama Hassaan

Abstract:

Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).

Keywords: strengthening, columns, advanced composite materials, earthquakes

Procedia PDF Downloads 78
1041 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 52
1040 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins

Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani

Abstract:

Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.

Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam

Procedia PDF Downloads 168
1039 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
1038 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet

Procedia PDF Downloads 148
1037 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 450