Search results for: image clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3322

Search results for: image clustering

1132 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 91
1131 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 247
1130 Nano-Hydroxyapatite/Dextrin/Chitin Nanocomposite System for Bone Tissue Engineering

Authors: Mohammad Shakir, Reshma Jolly, Mohammad Shoeb Khan, Noor-E-Iram

Abstract:

A nanocomposite system incorporating dextrin into nano-hydroxyapatite/chitin matrix (n-HA/DX/CT) has been successfully synthesized via co-precipitation route at room temperature for the application in bone tissue engineering by investigating biocompatibility, cytotoxicity and mechanical properties. The FTIR spectra of n-HA/DX/CT nanocomposite indicated a considerable intermolecular interaction between the various components of the system. The results of XRD, TEM and TGA/DTA revealed that the crystallinity, size and thermal stability of the n-HA/DX/CT scaffold has decreased and increased respectively. The result of SEM image of the n-HA/DX/CT scaffold indicated that the incorporation of dextrin affected the surface morphology while considerable in-vitro bioactivity has been observed in n-HA/DX/CT based on SBF study, referring a step towards possibility of making direct bond to living bone if implanted. Moreover, MTT assay suggested the non-toxic nature of n-HA/DX/CT to murine fibroblast L929 cells. The swelling study of n-HA/DX/CT scaffold indicated the low swelling rate for n-HADX/CT. All these results have paved the way for n-HA/DX/CT to be used as a competent material for bone tissue engineering.

Keywords: autograft, chitin, dextrin, nanocomposite

Procedia PDF Downloads 532
1129 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: climate change, climatic model, dry events, precipitation projections

Procedia PDF Downloads 142
1128 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 191
1127 Reproduction of New Media Art Village around NTUT: Heterotopia of Visual Culture Art Education

Authors: Yu Cheng-Yu

Abstract:

‘Heterotopia’, ‘Visual Cultural Art Education’ and ‘New Media’ of these three subjects seemingly are irrelevant. In fact, there are synchronicity and intertextuality inside. In addition to visual culture, art education inspires students the ability to reflect on popular culture image through visual culture teaching strategies in school. We should get involved in the community to construct the learning environment that conveys visual culture art. This thesis attempts to probe the heterogeneity of space and value from Michel Foucault and to research sustainable development strategy in ‘New Media Art Village’ heterogeneity from Jean Baudrillard, Marshall McLuhan's media culture theory and social construction ideology. It is possible to find a new media group that can convey ‘Visual Culture Art Education’ around the National Taipei University of Technology in this commercial district that combines intelligent technology, fashion, media, entertainment, art education, and marketing network. Let the imagination and innovation of ‘New Media Art Village’ become ‘implementable’ and new media Heterotopia of inter-subjectivity with the engagement of big data and digital media. Visual culture art education will also bring aesthetics into the community by New Media Art Village.

Keywords: social construction, heterogeneity, new media, big data, visual culture art education

Procedia PDF Downloads 246
1126 Cross-Sectional Associations between Deprivation Status and Physical Activity, Dietary Behaviours, Health-Related Variables, and Health-Related Quality of Life among Children Aged 9-11 Years

Authors: Maria Cardova

Abstract:

Aim and objectives: The purpose of this studywas to explore to what extent the deprivation statusinfluenced children’s physical activity, dietary behaviour, and health outcomes such as weight status. Background: The United Kingdom’s childhood obesity rates are currently ranked among the highest in Europe. North West England deals with highest rates of childhood obesity. Data from the UK Millennium Cohort Study suggested a deprivation gradient to childhood obesity in England, with obesity rates being the highest in the most deprived areas. Traditionally, it has been individual conception of health, but the contemporary stance is that health behaviours affecting obesity are influenced by a broad range of factors operating at multiple levels. According to socio-ecological model of health behaviour, differences in obesity rates and health outcomes are likely explained by differences in lifestyle behaviours including physical activity and diet behaviours. However, higher rates of obesity among deprived children are not due to physical inactivity, in fact, most socially disadvantaged children are the most physically active. Poor diet including high consumption of fast food and sugar-sweetened beverages and low consumption of fruit and vegetables was found to be the most prevalent among adolescents living in poverty. Methods: This study adopted quantitative approach. It consisted of combination of basic demographic data, anthropometry, and questionnaires. Children (N = 165, mean age = 10.04 years; 53.33% female; 46.66% male) completed survey packs during school day including KIDSCREEN, Youth Activity Profile, Beverage and Snack Questionnaire, and Child Body Image Scale questionnaires as well as had anthropometric measurements taken including Body mass index, waist circumference, weight, and height. Children’s deprivation status was based on the English Indices of Multiple Deprivation scores of the school they attended. Results: Children from more deprived areas had higher weight status, waist circumference. Deprivation status had also effect on some dimensions of the KIDSCREEN questionnaire, such as that those from more deprived areas felt less socially accepted and bullied by their peers, had worse feelings about themselves such as body image, and more difficulty with school and learning. Children from more deprived areas reported higher rates of physical activity and also differences in snack and fruit and vegetable intake than their more affluent peers. Conclusion: Results demonstrated that, children living in the most-deprived areas appear to be at greater risk of unfavourable health-related variables and behaviours and are exposed to home and neighbourhood environments that are less conducive to health-promoting behaviours compared to their peers from less deprived areas. These findings indicate that children living in highly deprived areas represent an important group for future interventions designed to promote health-behaviours that would impact on the quality of life of the child and other health variables such as weight status.

Keywords: children, dietary behaviour, health, obesity, physical Activity, weight Status

Procedia PDF Downloads 133
1125 Education in Personality Development and Grooming for Airline Business Program's Students of International College, Suan Sunandha Rajabhat University

Authors: Taksina Bunbut

Abstract:

Personality and grooming are vital for creating professionalism and safety image for all staffs in the airline industry. Airline Business Program also has an aim to educate students through the subject Personality Development and Grooming in order to elevate the quality of students to meet standard requirements of the airline industry. However, students agree that there are many difficulties that cause unsuccessful learning experience in this subject. The research is to study problems that can afflict students from getting good results in the classroom. Furthermore, exploring possible solutions to overcome challenges are also included in this study. The research sample consists of 140 students who attended the class of Personality Development and Grooming. The employed research instrument is a questionnaire. Statistic for data analysis is t-test and Multiple Regression Analysis. The result found that although students are satisfied with teaching and learning of this subject, they considered that teaching in English and teaching topics in social etiquette in different cultures are difficult for them to understand.

Keywords: personality development, grooming, Airline Business Program, soft skill

Procedia PDF Downloads 237
1124 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 523
1123 Factors Affecting Sense of Community in Residential Communities Case Study: Residential Communities in Tehran, Iran

Authors: Parvin Foroughifar

Abstract:

The concept of sense of community refers to residents’ sense of attachment and commitment to the other residents in a residential community. It is implicitly indicative of the mental image of a physical environment in which the residents enjoy strong social ties. Sense of community, a crucial factor in improving quality of life and social welfare, leads to life satisfaction in a residential community. Despite the important functions of such a notion, few empirical studies, to the best of the authors' knowledge, have been so far carried out in Iran to investigate the effective factors in sharpening the sense of community in residential communities. This survey research examined sense of community in 360 above 20-year old residents of three residential communities in Tehran, Iran using cluster sampling and questionnaire. The study yielded the result that variables of local social ties, social control and trust, sense of security, length of residence, use of public spaces, and mixed land use have a significant relationship with sense of community.

Keywords: sense of community, local social ties, sense of security, public space, residential community, Tehran

Procedia PDF Downloads 187
1122 Efficient Layout-Aware Pretraining for Multimodal Form Understanding

Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose

Abstract:

Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.

Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention

Procedia PDF Downloads 147
1121 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 271
1120 Digital Watermarking Using Fractional Transform and (k,n) Halftone Visual Cryptography (HVC)

Authors: R. Rama Kishore, Sunesh Malik

Abstract:

Development in the usage of internet for different purposes in recent times creates great threat for the copy right protection of the digital images. Digital watermarking is the best way to rescue from the said problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field and categorized like spatial and transform domain, blind and non-blind methods, visible and non visible techniques etc. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (k.n) shares of halftone visual cryptography (HVC) instead of (2, 2) share cryptography. (k,n) shares visual cryptography improves the security of the watermark. As halftone is a method of reprographic, it helps in improving the visual quality of watermark image. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method.

Keywords: digital watermarking, fractional transform, halftone, visual cryptography

Procedia PDF Downloads 353
1119 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 137
1118 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa

Authors: Sanele E. Nene L., Lia M. Hewitt

Abstract:

Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.

Keywords: ambivalence, embracing, Artificial intelligence, public hospital

Procedia PDF Downloads 78
1117 Early Detection of Lymphedema in Post-Surgery Oncology Patients

Authors: Sneha Noble, Rahul Krishnan, Uma G., D. K. Vijaykumar

Abstract:

Breast-Cancer related Lymphedema is a major problem that affects many women. Lymphedema is the swelling that generally occurs in the arms or legs caused by the removal of or damage to lymph nodes as a part of cancer treatment. Treating it at the earliest possible stage is the best way to manage the condition and prevent it from leading to pain, recurrent infection, reduced mobility, and impaired function. So, this project aims to focus on the multi-modal approaches to identify the risks of Lymphedema in post-surgical oncology patients and prevent it at the earliest. The Kinect IR Sensor is utilized to capture the images of the body and after image processing techniques, the region of interest is obtained. Then, performing the voxelization method will provide volume measurements in pre-operative and post-operative periods in patients. The formation of a mathematical model will help in the comparison of values. Clinical pathological data of patients will be investigated to assess the factors responsible for the development of lymphedema and its risks.

Keywords: Kinect IR sensor, Lymphedema, voxelization, lymph nodes

Procedia PDF Downloads 136
1116 Nanostructural Analysis of the Polylactic Acid (PLA) Fibers Functionalized by RF Plasma Treatment

Authors: J. H. O. Nascimento, F. R. Oliveira, K. K. O. S. Silva, J. Neves, V. Teixeira, J. Carneiro

Abstract:

These the aliphatic polyesters such as Polylactic Acid (PLA) in the form of fibers, nanofibers or plastic films, generally possess chemically inert surfaces, free porosity, and surface free energy (ΔG) lesser than 32 mN/m. It is therefore considered a low surface energy material, consequently has a low work of adhesion. For this reason, the products manufactured using these polymers are often subjected to surface treatments in order to change its physic-chemical surface, improving their wettability and the Work of Adhesion (WA). Plasma Radio Frequency low pressure (RF) treatment was performed in order to improve the Work of Adhesion (WA) on PLA fibers. Different parameters, such as, power, ratio of working gas (Argon/Oxygen) and treatment time were used to optimize the plasma conditions to modify the PLA surface properties. With plasma treatment, a significant increase in the work of adhesion on PLA fiber surface was observed. The analysis performed by XPS showed an increase in polar functional groups and the SEM and AFM image revealed a considerable increase in roughness.

Keywords: RF plasma, surface modification, PLA fabric, atomic force macroscopic, Nanotechnology

Procedia PDF Downloads 535
1115 Land Use Change Detection Using Remote Sensing and GIS

Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi

Abstract:

In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.

Keywords: Haraz basin, change detection, land-use, satellite data

Procedia PDF Downloads 413
1114 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 130
1113 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 130
1112 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 137
1111 Modelling and Simulation of Milk Fouling

Authors: Harche Rima, Laoufi Nadia Aicha

Abstract:

This work focuses on the study and modeling of the fouling phenomenon in a vertical pipe. In the first step, milk is one of the fluids obeying the phenomenon of fouling because of the denaturation of these proteins, especially lactoglobulin, which is the active element of milk, and to facilitate its use, we chose to study milk as a fouling fluid. In another step, we consider the test section of our installation as a tubular-type heat exchanger that works against the current and in a closed circuit. A simple mathematical model of Kern & Seaton, based on the kinetics of the fouling resistance, was used to evaluate the influence of the operating parameters (fluid flow velocity and exchange wall temperature) on the fouling resistance. The influence of the variation of the fouling resistance with the operating conditions on the efficiency of the heat exchanger and the importance of the dirty state exchange coefficient as an exchange quality control parameter were discussed and examined. On the other hand, an electronic scanning microscope analysis was performed on the milk deposit in order to obtain its actual image and composition, which allowed us to calculate the thickness of this deposit.

Keywords: fouling, milk, tubular heat exchanger, fouling resistance

Procedia PDF Downloads 50
1110 The National Idea and Selthindentification of Nation is the Foundation of the Society’s Development

Authors: K. Aisultanova, O. Abdimanuly

Abstract:

The article is told about the factors influencing the formation of the national idea and national identity. Paying attention to the idea and purpose of 'Eternal county', historical dates and examples are given. The structure of the idea 'The eternal country' by ancient Turks is discussed and the history of the legend prevalent among the Kazakh people, the image of the mythical historical figures are analyzed. Al-Farabi’s philosophical work 'Honest city', Zhysip Balasagun’s poem 'Happy Knowledge' are told, the opinions of scholars researching the nation's history, literature, and culture are given. As international experience shows, the idea of a new stage in the development of the country's great national society and the state for the purpose of political, social, economic, cultural, spiritual, and the other efforts are consolidated. The idea of the national, ethnic, religious, cultural and other communities united by a group of people sharing a collective memory, goals, ideas and dreams and , world view, a complex set of beliefs and values are expressed.

Keywords: independence, historical process, national idea, the national ideology, society, state

Procedia PDF Downloads 303
1109 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: Hossein Kheirollahi, Yunhua Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: finite element analysis, hip fracture, strain, stress

Procedia PDF Downloads 502
1108 Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces

Authors: Hervé Zénouda

Abstract:

This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies.

Keywords: audio-games, video games, computer generated music, gameplay, interactivity, synesthesia, sound interfaces, relationships image/sound, audiovisual music

Procedia PDF Downloads 111
1107 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques

Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari

Abstract:

Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.

Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel

Procedia PDF Downloads 335
1106 Shaabi in the City: On Modernizing Sounds and Exclusion in Egyptian Cities

Authors: Mariam Aref Mahmoud

Abstract:

After centuries of historical development, Egypt is no stranger to national identity frustrations. What may or may not be counted as this “national identity” becomes a source of contention. Today, after decades of neoliberal reform, Cairo has become the center of Egypt’s cultural debacle. At its heart, the Egyptian capital serves as Egypt’s extension into global capitalism, its flailing hope to become part of the modernized, cosmopolitan world. Yet, to converge into this image of cosmopolitanism, Cairo must silence the perceived un-modernized sounds, cultures, and spaces that arise from within its alleyways. Currently, the agitation surrounding shaabi music, particularly, that of mahraganat, places these contentions to the center of the modernization debates. This paper will discuss the process through which the conversations between modernization, space, and culture have taken place through a historical analysis of national identity formation under Egypt’s neoliberal regimes. Through this, the paper concludes that music becomes a spatial force through which public space, identity, and globalization must be contested. From these findings researchers can then analyze Cairo through not only its physical landscapes, but also its metaphysical features – such as the soundscape.

Keywords: music, space, globalization, Cairo

Procedia PDF Downloads 108
1105 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations

Authors: Tushar K. Routh

Abstract:

If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.

Keywords: DNN robustness, decision boundary, local curvature, network complexity

Procedia PDF Downloads 74
1104 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers

Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez

Abstract:

An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.

Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization

Procedia PDF Downloads 161
1103 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 110