Search results for: analytical network design model
28162 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors
Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi
Abstract:
The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor
Procedia PDF Downloads 62828161 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools
Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson
Abstract:
Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.Keywords: BIM, data exchange, interoperability issues, lighting simulations
Procedia PDF Downloads 23928160 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent
Procedia PDF Downloads 12728159 Control of a Quadcopter Using Genetic Algorithm Methods
Authors: Mostafa Mjahed
Abstract:
This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system
Procedia PDF Downloads 43128158 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model
Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu
Abstract:
Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing
Procedia PDF Downloads 25028157 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection
Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya
Abstract:
Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.Keywords: carbon nanotubes network, biosensor, human serum albumin
Procedia PDF Downloads 13728156 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique
Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V
Abstract:
This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index
Procedia PDF Downloads 15028155 Residential and Care Model for Elderly People Based on “Internet Plus”
Authors: Haoyi Sheng
Abstract:
China's aging tendency is becoming increasingly severe, which leads to the embarrassing situation of "getting old before getting wealthy". The traditional pension model does not comply with the need of today. Relying on "Internet Plus", it can efficiently integrate information and resources and meet the personalized needs of elderly care. It can reduce the operating cost of community elderly care facilities and lay a technical foundation for providing better services for the elderly. The key for providing help for the elderly in the future is to effectively integrate technology, make good use of technology, and improve the efficiency of elderly care services. The effective integration of traditional home care, community care, intelligent elderly care equipment and medical resources to create the "Internet Plus" community intelligent pension service mode has become the future development trend of aging care. The research method of this paper is to collect literature and conduct theoretical research on community pension firstly. Secondly, the combination of suitable aging design and "Internet Plus" is elaborated through research. Finally, this paper states the current level of intelligent technology in old-age care and looks into the future by understanding multiple levels of "Internet Plus". The development of community intelligent pension mode and content under "Internet Plus" has enormous development potential. In addition to the characteristics and functions of ordinary houses, residential design of endowment housing has higher requirements for comfort and personalization, and the people-oriented is the principle of design.Keywords: ageing tendency, 'Internet Plus', community intelligent elderly care, elderly care service model, technology
Procedia PDF Downloads 13728154 Development and Evaluation of Removable Shear Link with Perforated Web
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The objective of this paper is to investigate, through an analytical study, the behavior of both stiffened and un-stiffened removable shear link with perforated web considering different number and size of web openings. Removable shear link with perforated web is a novel shear link beam proposed to be used in eccentrically braced frame (EBF). The proposed link overcomes the difficulties during construction slab due to less cross-sectional areas of the link to control the plastic deformation on the conventional EBF with removable shear link. Finite element analyses were conducted under both cyclic and monotonic loading and from the results obtained design equations are developed.Keywords: eccentrically braced frame, removable shear link, perforated web, non-linear FE analysis
Procedia PDF Downloads 36328153 Reducing the Urban Heat Island Effect by Urban Design Strategies: Case Study of Aksaray Square in Istanbul
Authors: Busra Ekinci
Abstract:
Urban heat island term becomes one of the most important problem in urban areas as a reflection of global warming in local scale last years. Many communities and governments are taking action to reduce heat island effects on urban areas where the half of the world's population live today. At this point, urban design turned out to be an important practice and research area for providing an environmentally sensitive urban development. In this study, mitigating strategies of urban heat island effects by urban design are investigated in Aksaray Square and surroundings in Istanbul. Aksaray is an important historical and commercial center of Istanbul, which has an increasing density due to be the node of urban transportation. Also, Istanbul Metropolitan Municipality prepared an urban design project to respond the needs of growing population in the area for 2018. The purpose of the study is emphasizing the importance of urban design objectives and strategies that are developed to reduce the heat island effects on urban areas. Depending on this, the urban heat island effect of the area was examined based on the albedo (reflectivity) parameter which is the most effective parameter in the formation of the heat island effect in urban areas. Albedo values were calculated by Albedo Viewer web application model that was developed by Energy and Environmental Engineering Department of Kyushu University in Japan. Albedo parameter had examined for the present situation and the planned situation with urban design project. The results show that, the current area has urban heat island potential. With the Aksaray Square Project, the heat island effect on the area can be reduced, but would not be completely prevented. Therefore, urban design strategies had been developed to reduce the island effect in addition to the urban design project of the area. This study proves that urban design objectives and strategies are quite effective to reduce the heat island effects, which negatively affect the social environment and quality of life in urban areas.Keywords: Albedo, urban design, urban heat island, sustainable design
Procedia PDF Downloads 58028152 Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology
Authors: Mark Davey
Abstract:
Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases.Keywords: embedded systems, multiprocessor, network on chip, side channel
Procedia PDF Downloads 7128151 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 12628150 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation
Authors: Minho Kwak, Suhwan Yun, Choonsoo Park
Abstract:
Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape
Procedia PDF Downloads 34728149 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC
Procedia PDF Downloads 24128148 Reducing the Stigma of Homelessness through Community Engagement and Reciprocity
Authors: Jessica Federman
Abstract:
The current research offers a longitudinal and qualitative study design to examine how reciprocity improves relations between the homeless and various stakeholders within a community. The study examines a homeless shelter that sought to establish a facility within a community of Los Angeles, that was initially met with strong resistance and opposition from a variety of organizations due to deeply entrenched views about the negative impact of having homeless individuals within the community. The project tested an intervention model that targets the reduction of stigmatization of homeless individuals and promotes synergistic exchanges between conflicted organizational entities in communities. Years later, the data show that there has been a remarkable reversal in the perception of the agency by the very forces that initially prevented it from being established. This reversal was achieved by a few key strategic decisions. Community engagement was the first step toward changing people’s minds and demonstrating how the homeless shelter was helping to alleviate the problem of homelessness instead of contributing to it. Central to the non-profit’s success was the agency’s pioneering formulation of a treatment model known as, Reciprocal Community Engagement Model (RCEM). The model works by reintegrating the homeless back into society through relationship building within a network of programs that foster positive human connections. This approach aims to draw the homeless out of the debilitating isolation of their situation, reintegrate them through purposeful roles in the community while simultaneously providing a reciprocal benefit to the community at large. Through multilevel, simultaneous social interaction, RCEM has a direct impact not only on the homeless shelter’s clients but also for the community as well. The agency’s approach of RCEM led to their homeless clients getting out of the shelter and getting to work in the community directly alongside other community volunteers and for the benefit of other city and community organizations. This led to several opportunities for community members and residents to interact in meaningful ways. Through each successive exposure, the resident and community members’ distrust in one another was gradually eased and a mutually supportive relationship restored. In this process, the community member becomes the locus of change as much as the residents of the shelter. Measurements of community trust and resilience increased while negative perceptions of homeless people decreased.Keywords: stigma, homelessness, reciprocity, identity
Procedia PDF Downloads 18228147 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.Keywords: numerical methods, induction furnaces, induction heating, finite element method, Comsol multiphysics software
Procedia PDF Downloads 44928146 Smart Forms and Intelligent Transportation Network Patterns, an Integrated Spatial Approach to Smart Cities and Intelligent Transport Systems in India Cities
Authors: Geetanjli Rani
Abstract:
The physical forms and network pattern of the city is expected to be enhanced with the advancement of technology. Reason being, the era of virtualisation and digital urban realm convergence with physical development. By means of comparative Spatial graphics and visuals of cities, the present paper attempts to revisit the very base of efficient physical forms and patterns to sync the emergence of virtual activities. Thus, the present approach to integrate spatial Smartness of Cities and Intelligent Transportation Systems is a brief assessment of smart forms and intelligent transportation network pattern to the dualism of physical and virtual urban activities. Finally, the research brings out that the grid iron pattern, radial, ring-radial, orbital etc. stands to be more efficient, effective and economical transit friendly for users, resource optimisation as well as compact urban and regional systems. Moreover, this paper concludes that the idea of flow and contiguity hidden in such smart forms and intelligent transportation network pattern suits to layering, deployment, installation and development of Intelligent Transportation Systems of Smart Cities such as infrastructure, facilities and services.Keywords: smart form, smart infrastructure, intelligent transportation network pattern, physical and virtual integration
Procedia PDF Downloads 15428145 Analytical Design of Fractional-Order PI Controller for Decoupling Control System
Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh
Abstract:
The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system
Procedia PDF Downloads 33128144 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 9128143 A Designing 3D Model: Castle of the Mall-Dern
Authors: Nanadcha Sinjindawong
Abstract:
This article discusses the design process of a community mall called Castle of The Mall-dern. The concept behind this mall is to combine elements of a medieval castle with modern architecture. The author aims to create a building that fits into the surroundings while also providing users with the vibes of the ancient era. The total area used for the mall is 4,000 square meters, with three floors. The first floor is 1,500 square meters, the second floor is 1,750 square meters, and the third floor is 750 square meters. Research Aim: The aim of this research is to design a community mall that sells ancient clothes and accessories, and to combine sustainable architectural design with the ideas of ancient architecture in an urban area with convenient transportation. Methodology: The research utilizes qualitative research methods in architectural design. The process begins with calculating the given area and dividing it into different zones. The author then sketches and draws the plan of each floor, adding the necessary rooms based on the floor areas mentioned earlier. The program "SketchUp" is used to create an online 3D model of the community mall, and a physical model is built for presentation purposes on A1 paper, explaining all the details. Findings: The result of this research is a community mall with various amenities. The first floor includes retail shops, clothing stores, a food center, and a service zone. Additionally, there is an indoor garden with a fountain and a tree for relaxation. The second and third floors feature a void in the middle, with a few stores, cafes, restaurants, and studios on the second floor. The third floor is home to the administration and security control room, as well as a community gathering area designed as a public library with a café inside. Theoretical Importance: This research contributes to the field of sustainable architectural design by combining ancient architectural ideas with modern elements. It showcases the potential for creating buildings that blend historical aesthetics with contemporary functionality. Data Collection and Analysis Procedures: The data for this research is collected through a combination of area calculation, sketching, and building a 3D model. The analysis involves evaluating the design based on the allocated area, zoning, and functional requirements for a community mall. Question Addressed: The research addresses the question of how to design a community mall with a theme of ancient Medieval and Victorian eras. It explores how to combine sustainable architectural design principles with historical aesthetics to create a functional and visually appealing space. Conclusion: In conclusion, this research successfully designs a community mall called “Castle of The Mall-dern” that incorporates elements of Medieval and Victorian architecture. The building encompasses various zones, including retail shops, restaurants, community gathering areas, and service zones. It also features an interior garden and a public library within the mall. The research contributes to the field of sustainable architectural design by showcasing the potential for combining ancient architectural ideas with modern elements in an urban setting.Keywords: 3D model, community mall, modern architecture, medieval architecture
Procedia PDF Downloads 10728142 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 26228141 Level of Application of Integrated Talent Management According To IBM Institute for Business Value Case Study Palestinian Governmental Agencies in Gaza Strip
Authors: Iyad A. A. Abusahloub
Abstract:
This research aimed to measure the level of perception and application of Integrated Talent Management according to IBM standards, by the upper and middle categories in Palestinian government institutions in Gaza, using a descriptive-analytical method. Using a questionnaire based on the standards of the IBM Institute for Business Value, the researcher added a second section to measure the perception of integrated talent management, the sample was 248 managers. The SPSS package was used for statistical analysis. The results showed that government institutions in Gaza apply Integrated Talent Management according to IBM standards at a medium degree did not exceed 59.8%, there is weakness in the perception of integrated talent management at the level of 53.6%, and there is a strong correlation between (Integrated Talent Management) and (the perception of the integrated talent management) amounted to 92.9%, and 88.9% of the change in the perception of the integrated talent management is by (motivate and develop, deploy and manage, connect and enable, and transform and sustain) talents, and 11.1% is by other factors. Conclusion: This study concluded that the integrated talent management model presented by IBM with its six dimensions is an effective model to reach your awareness and understanding of talent management, especially that it must rely on at least four basic dimensions out of the six dimensions: 1- Stimulating and developing talent. 2- Organizing and managing talent. 3- Connecting with talent and empowering it. 4- Succession and sustainability of talent. Therefore, this study recommends the adoption of the integrated talent management model provided by IBM to any organization across the world, regardless of its specialization or size, to reach talent sustainability.Keywords: HR, talent, talent management, IBM
Procedia PDF Downloads 8428140 Point-of-Interest Recommender Systems for Location-Based Social Network Services
Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim
Abstract:
Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.Keywords: location-based social network services, point-of-interest, recommender systems, business analytics
Procedia PDF Downloads 22928139 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams
Authors: Saruhan Kartal, Ilker Kalkan
Abstract:
The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment
Procedia PDF Downloads 14028138 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error
Procedia PDF Downloads 44428137 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device
Authors: Pradakshina Sharma, Jagriti Narang
Abstract:
Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.Keywords: biosensors, ePAD, arboviral infections, point of care
Procedia PDF Downloads 9728136 Comparative Study on Manet Using Soft Computing Techniques
Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri
Abstract:
Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network
Procedia PDF Downloads 34928135 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network
Authors: Z. Abdollahi Biron, P. Pisu
Abstract:
Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon
Procedia PDF Downloads 23928134 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 36128133 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container
Authors: Mohammad R. Jalali
Abstract:
Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions
Procedia PDF Downloads 398