Search results for: reduced order macro models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22891

Search results for: reduced order macro models

20731 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems

Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi

Abstract:

The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.

Keywords: mobile databases, synchronization, cache, response time

Procedia PDF Downloads 411
20730 Barriers for Sustainable Consumption of Antifouling Products in the Baltic Sea

Authors: Bianca Koroschetz, Emma Mäenpää

Abstract:

The purpose of this paper is to study consumer practices and meanings of different antifouling methods in order to identify the main barriers for sustainable consumption of antifouling products in the Baltic Sea. The Baltic Sea is considered to be an important tourism area. More than 3.5 million leisure boaters use the sea for recreational boating. Most leisure boat owners use toxic antifouling paint to keep barnacles from attaching to the hull. Attached barnacles limit maneuverability and add drag which in turn increases fuel costs. Antifouling paint used to combat barnacles causes particular problems, as the use of these products continuously adds to the distribution of biocides in the coastal ecosystem and leads to the death of marine organisms. To keep the Baltic Sea as an attractive tourism area measures need to be undertaken to stop the pollution coming from toxic antifouling paints. The antifouling market contains a wide range of environment-friendly alternative products such as a brush wash for boats, hand scrubbing devices, hull covers and boat lifts. Unfortunately, not a lot of boat owners use these environment-friendly alternatives and instead prefer the use of the traditional toxic copper paints. We ask “Why is the unsustainable consumption of toxic paints still predominant when there is a big range of environment-friendly alternatives available? What are the barriers for sustainable consumption?” Environmental psychology has concentrated on developing models of human behavior, including the main factors that influence pro-environmental behavior. The main focus of these models was directed to the individual’s attitudes, principals, and beliefs. However, social practice theory emphasizes the importance to study practices, as they have a stronger explanatory power than attitude-behavior to explain unsustainable consumer behavior. Thus, the study focuses on describing the material, meaning and competence of antifouling practice in order to understand the social and cultural embeddedness of the practice. Phenomenological interviews were conducted with boat owners using antifouling products such as paints and alternative methods. This data collection was supplemented with participant observations in marinas. Preliminary results indicate that different factors such as costs, traditions, advertising, frequency of use, marinas and application of method impact on the consumption of antifouling products. The findings have shown that marinas have a big influence on the consumption of antifouling goods. Some marinas are very active in supporting the sustainable consumption of antifouling products as for example in Stockholm area several marinas subsidize costs for using environmental friendly alternatives or even forbid toxic paints. Furthermore the study has revealed that environmental friendly methods are very effective and do not have to be more expensive than painting with toxic paints. This study contributes to a broader understanding why the unsustainable consumption of toxic paints is still predominant when a big range of environment-friendly alternatives exist. Answers to this phenomenon will be gained by studying practices instead of attitudes offering a new perspective on environmental issues.

Keywords: antifouling paint, Baltic Sea, boat tourism, sustainable consumption

Procedia PDF Downloads 198
20729 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 379
20728 Stochastic Prioritization of Dependent Actuarial Risks: Preferences among Prospects

Authors: Ezgi Nevruz, Kasirga Yildirak, Ashis SenGupta

Abstract:

Comparing or ranking risks is the main motivating factor behind the human trait of making choices. Cumulative prospect theory (CPT) is a preference theory approach that evaluates perception and bias in decision making under risk and uncertainty. We aim to investigate the aggregate claims of different risk classes in terms of their comparability and amenability to ordering when the impact of risk perception is considered. For this aim, we prioritize the aggregate claims taken as actuarial risks by using various stochastic ordering relations. In order to prioritize actuarial risks, we use stochastic relations such as stochastic dominance and stop-loss dominance that are proposed in the frame of partial order theory. We take into account the dependency of the individual claims exposed to similar environmental risks. At first, we modify the zero-utility premium principle in order to obtain a solution for the stop-loss premium under CPT. Then, we propose a stochastic stop-loss dominance of the aggregate claims and find a relation between the stop-loss dominance and the first-order stochastic dominance under the dependence assumption by using properties of the familiar as well as some emerging multivariate claim distributions.

Keywords: cumulative prospect theory, partial order theory, risk perception, stochastic dominance, stop-loss dominance

Procedia PDF Downloads 326
20727 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control

Authors: Arnab Majumdar, Sanjoy Sadhukhan

Abstract:

Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.

Keywords: gun barrel steels, IF grade, chemistry, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing

Procedia PDF Downloads 390
20726 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis

Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman

Abstract:

Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.

Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test

Procedia PDF Downloads 131
20725 Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer

Authors: Yufen Qin

Abstract:

Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory.

Keywords: language model, natural language processing, prompt, text sentiment transfer

Procedia PDF Downloads 89
20724 Measuring Technology of Airship Propeller Thrust and Torque in China Academy of Aerospace Aerodynamics

Authors: Ma Hongqiang, Yang Hui, Wen Haoju, Feng Jiabo, Bi Zhixian, Nie Ying

Abstract:

In order to measure thrust and torque of airship propeller, a two-component balance and data acquisition system was developed in China Academy of Aerospace Aerodynamics(CAAA) in early time. During the development, some problems were encountered. At first, the measuring system and its protective parts made the weight of whole system increase significantly. Secondly, more parts might induce more failures, so the reliability of the system was decreased. In addition, the rigidity of the system was lowered, and the structure was more possible to vibrate. Therefore, CAAA and the Academy of Opto-Electronics, Chinese Academy of Science(AOECAS) developed a new technology, use the propeller supporting rack as a spring element, attach strain gages onto it, sum up as a generalized balance. And new math models, new calibration methods and new load determining methods were developed.

Keywords: airship, propeller, thrust and torque, flight test

Procedia PDF Downloads 362
20723 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education

Authors: Priscilla Eng Lian Murphy

Abstract:

This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.

Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics

Procedia PDF Downloads 268
20722 Reliability Analysis of Steel Columns under Buckling Load in Second-Order Theory

Authors: Hamed Abshari, M. Reza Emami Azadi, Madjid Sadegh Azar

Abstract:

For studying the overall instability of members of steel structures, there are several methods in which overall buckling and geometrical imperfection effects are considered in analysis. In first section, these methods are compared and ability of software to apply these methods is studied. Buckling loads determined from theoretical methods and software is compared for 2D one bay, one and two stories steel frames. To consider actual condition, buckling loads of three steel frames that have various dimensions are calculated and compared. Also, uncertainties that exist in loading and modeling of structures such as geometrical imperfection, yield stress, and modulus of elasticity in buckling load of 2D framed steel structures have been studied. By performing these uncertainties to each reliability analysis procedures (first-order, second-order, and simulation methods of reliability), one index of reliability from each procedure is determined. These values are studied and compared.

Keywords: buckling, second-order theory, reliability index, steel columns

Procedia PDF Downloads 497
20721 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.

Keywords: plastic waste, graphene oxide, dye, adsorption

Procedia PDF Downloads 94
20720 Finite Element Modelling of a 3D Woven Composite for Automotive Applications

Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno

Abstract:

A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.

Keywords: 3D woven composite (3DWC), meso-scale finite element model, homogenisation of elastic material properties, Abaqus Python scripting

Procedia PDF Downloads 148
20719 Using Infrared Thermography, Photogrammetry and a Remotely Piloted Aircraft System to Create 3D Thermal Models

Authors: C. C. Kruger, P. Van Tonder

Abstract:

Concrete deteriorates over time and the deterioration can be escalated due to multiple factors. When deteriorations are beneath the concrete’s surface, they could be unknown, even more so when they are located at high elevations. Establishing the severity of such defects could prove difficult and therefore the need to find efficient, safe and economical methods to find these defects becomes ever more important. Current methods using thermography to find defects require equipment such as scaffolding to reach these higher elevations. This could become time- consuming and costly. The risks involved with personnel scaffold or abseil to such heights are high. Accordingly, by combining the technologies of a thermal camera and a Remotely Piloted Aerial System it could be used to find better diagnostic methods. The data could then be constructed into a 3D thermal model to easy representation of the results

Keywords: concrete, infrared thermography, 3D thermal models, diagnostic

Procedia PDF Downloads 177
20718 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature

Authors: Enayat Enayati, Reza Behtash

Abstract:

The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.

Keywords: catalyst, converter, poisoning, temperature

Procedia PDF Downloads 825
20717 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round

Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner

Abstract:

Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.

Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models

Procedia PDF Downloads 234
20716 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil

Authors: Ritu Chaturvedi, Manoj Paul

Abstract:

A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.

Keywords: heavy metal, mycorrhiza, pea, phyroremediation

Procedia PDF Downloads 236
20715 Practice, Observation, and Gender Effects on Students’ Entrepreneurial Skills Development When Teaching through Entrepreneurship Is Adopted: Case of University of Tunis El Manar

Authors: Hajer Chaker Ben Hadj Kacem, Thouraya Slama, Néjiba El Yetim Zribi

Abstract:

This paper analyzes the effects of gender, affiliation, prior work experience, social work, and vicarious learning through family role models on entrepreneurial skills development by students when they have learned through the entrepreneurship method in Tunisia. Authors suggest that these variables enhance the development of students’ entrepreneurial skills when combined with teaching through entrepreneurship. The article assesses the impact of these combinations by comparing their effects on the development of thirteen students’ entrepreneurial competencies, namely entrepreneurial mindset, core self-evaluation, entrepreneurial attitude, entrepreneurial knowledge, creativity, financial literacy, managing ambiguity, marshaling of resources, planning, teaching methods, entrepreneurial teachers, innovative employee, and Entrepreneurial intention. Authors use a two-sample independent t-test to make the comparison, and the results indicate that, when combined with teaching through the entrepreneurship method, students with prior work experience developed better six entrepreneurial skills; students with social work developed better three entrepreneurial skills, men developed better four entrepreneurial skills than women. However, all students developed their entrepreneurial skills through this practical method regardless of their affiliation and their vicarious learning through family role models.

Keywords: affiliation, entrepreneurial skills, gender, role models, social work, teaching through entrepreneurship, vicarious learning, work experience

Procedia PDF Downloads 113
20714 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process

Authors: Mahesh K. Chudasama, Harit K. Raval

Abstract:

3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.

Keywords: analytical modeling, cone frustum, dynamic bending, static bending

Procedia PDF Downloads 310
20713 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples

Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges

Abstract:

Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.

Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review

Procedia PDF Downloads 188
20712 Modeling the Effects of Temperature on Ambient Air Quality Using AERMOD

Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson

Abstract:

Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO₂) – as a model air pollutant. The research uses AERMOD model to predict the SO₂ dispersion trends in the surrounding area. Emissions from five (5) industrial stacks on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1ᵒC, + 3ᵒC and + 5ᵒC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO₂ at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO₂ concentration levels. The average increase of SO₂ levels was 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees, respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.

Keywords: air quality, sulfur dioxide, dispersion models, global warming, KSA

Procedia PDF Downloads 85
20711 Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures.

Keywords: ductile-to-brittle transition temperature (DBTT), EUROFER, reduced activation ferritic/martensitic (RAFM) steels, thermal treatments

Procedia PDF Downloads 306
20710 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 33
20709 Interaction of Phytochemicals Present in Green Tea, Honey and Cinnamon to Human Melanocortin 4 Receptor

Authors: Chinmayee Choudhury

Abstract:

Human Melanocortin 4 Receptor (HMC4R) is one of the most potential drug targets for the treatment of obesity which controls the appetite. A deletion of the residues 88-92 in HMC4R is sometimes the cause of severe obesity in the humans. In this study, two homology models are constructed for the normal as well as mutated HMC4Rs and some phytochemicals present in Green Tea, Honey and Cinnamon have been docked to them to study their differential binding to the normal and mutated HMC4R as compared to the natural agonist α- MSH. Two homology models have been constructed for the normal as well as mutated HMC4Rs using the Modeller9v7. Some of the phytochemicals present in Green Tea, Honey, and Cinnamon, which have appetite suppressant activities are constructed, minimized and docked to these normal and mutated HMC4R models using ArgusLab 4.0.1. The mode of binding of the phytochemicals with the Normal and Mutated HMC4Rs have been compared. Further, the mode of binding of these phytochemicals with that of the natural agonist α- Melanocyte Stimulating Hormone(α-MSH) to both normal and mutated HMC4Rs have also been studied. It is observed that the phytochemicals Kaempherol, Epigallocatechin-3-gallate (EGCG) present in Green Tea and Honey, Isorhamnetin, Chlorogenic acid, Chrysin, Galangin, Pinocambrin present in Honey, Cinnamaldehyde, Cinnamyl acetate and Cinnamyl alcohol present in Cinnamon have capacity to form more stable complexes with the Mutated HMC4R as compared to α- MSH. So they may be potential agonists of HMC4R to suppress the appetite.

Keywords: HMC4R, α-MSH, docking, photochemical, appetite suppressant, homology modelling

Procedia PDF Downloads 197
20708 3D-Printing Compressible Macroporous Polymer Using Poly-Pickering-High Internal Phase Emulsions as Micromixer

Authors: Hande Barkan-Ozturk, Angelika Menner, Alexander Bismarck

Abstract:

Microfluidic mixing technology grew rapidly in the past few years due to its many advantages over the macro-scale mixing, especially the ability to use small amounts of internal volume and also very high surface-to-volume ratio. The Reynold number identify whether the mixing is operated by the laminar or turbulence flow. Therefore, mixing with very fast kinetic can be achieved by diminishing the channel dimensions to decrease Reynold number and the laminar flow can be accomplished. Moreover, by using obstacles in the micromixer, the mixing length and the contact area between the species have been increased. Therefore, the channel geometry and its surface property have great importance to reach satisfactory mixing results. Since poly(-merised) High Internal Phase Emulsions (polyHIPEs) have more than 74% porosity and their pores are connected each other with pore throats, which cause high permeability, they are ideal candidate to build a micromixer. The HIPE precursor is commonly produced by using an overhead stirrer to obtain relatively large amount of emulsion in batch process. However, we will demonstrate that a desired amount of emulsion can be prepared continuously with micromixer build from polyHIPE, and such HIPE can subsequently be employed as ink in 3D printing process. In order to produce the micromixer a poly-Pickering(St-co-DVB)HIPE with 80% porosity was prepared with modified silica particles as stabilizer and surfactant Hypermer 2296 to obtain open porous structure and after coating of the surface, the three 1/16' ' PTFE tubes to transfer continuous (CP) and internal phases (IP) and the other is to collect the emulsion were placed. Afterwards, the two phases were injected in the ratio 1:3 CP:IP with syringe dispensers, respectively, and highly viscoelastic H(M)IPE, which can be used as an ink in 3D printing process, was gathered continuously. After the polymerisation of the resultant emulsion, polyH(M)IPE has interconnected porous structure identical to the monolithic polyH(M)IPE indicating that the emulsion can be prepared constantly with poly-Pickering-HIPE as micromixer and it can be used to prepare desired pattern with a 3D printer. Moreover, the morphological properties of the emulsion can be adjustable by changing flow ratio, flow speed and structure of the micromixer.

Keywords: 3D-Printing, emulsification, macroporous polymer, micromixer, polyHIPE

Procedia PDF Downloads 164
20707 Exploring the Risks and Vulnerabilities of Child Trafficking in West Java, Indonesia

Authors: B. Rusyidi, D. Mariana

Abstract:

Although reforms in trafficking regulations have taken place since 2007, Indonesia is still struggling to fight child trafficking. This study aimed to identify and assess risk factors and vulnerabilities in the life of trafficked children prior to, during, and after being trafficked in order to inform the child protection system and its policies. The study was qualitative and utilized in-depth interviews to collect data. Data were gathered in 2014 and 2015 from 15 trafficked and sexually exploited girls aged 14 to 17 years originating from West Java. Social workers, safe home personnel and parents were also included as informants. Data analysis was guided by the ecological perspective and theme analyses. The study found that risks and vulnerabilities of the victims were associated with conditions at various levels of the environment. At the micro level, risk factors and vulnerabilities included young age, family conflict/violence, involvement with the “wrong” circle of friends/peers, family poverty, lack of social and economic support for the victim’s family, and psychological damages due to trafficking experiences. At the mezzo level, the lack of structured activities after school, economic inequality, stigma towards victims, lack of services for victims, and minimum public education on human trafficking were among the community hazards that increased the vulnerability and risks. Gender inequality, consumerism, the view of children as assets, corruption, weak law enforcement, the lack of institutional support, and community-wide ignorance regarding trafficking were found as factors that increased risks and vulnerabilities at the macro level. The findings from the study underline the necessity to reduce risk factors and promote protective factors at the individual, family, community and societal levels. Shifting the current focus from tertiary to primary/prevention policies and improving institutional efforts are pressing needs in the context of reducing child trafficking in Indonesia. The roles of human service providers including social work also should be promoted.

Keywords: child trafficking, child sexual exploitation, ecological perspective, risks and vulnerabilities

Procedia PDF Downloads 281
20706 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat

Authors: Amit Kumar Verma

Abstract:

The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.

Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL

Procedia PDF Downloads 355
20705 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 102
20704 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 98
20703 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 118
20702 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches

Procedia PDF Downloads 354