Search results for: low temperature heat source
10239 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material
Authors: Kaling Taki, Rohit Gahlot, Manish Kumar
Abstract:
Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.
Procedia PDF Downloads 11110238 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.Keywords: co-current, counter-current, Euler-Lagrange model, heat transfer, mass transfer
Procedia PDF Downloads 21210237 Excellent Combination of Tensile Strength and Elongation of Novel Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: Mokali Veeresham
Abstract:
In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step novel reverse rolling up to a 90% reduction in thickness. The reverse rolled 90% samples subsequently used for annealing at 800°C and 1000°C temperatures for 1h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains BCC single-phase; upon annealing at 800°C temperature, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C temperatures, respectively. The reverse rolled condition, and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high tensile strength (UTS) 1430MPa and 1556 MPa without compromising loss of ductility consists of an appreciable amount of 21% and 20% elongation, respectively.Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia PDF Downloads 14010236 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material
Authors: Yong Ren, Yaping Zhang
Abstract:
A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.Keywords: phase change material, drug release kinetics, double emulsion, microfluidics
Procedia PDF Downloads 35610235 Soret and Dufour Effect on Variable Viscosity and Thermal Conductivity of an Inclined Magnetic Field with Dissipation in Non-Darcy Porous Medium
Authors: Rasaq A. Kareem, Sulyman O. Salawu
Abstract:
The study of Soret and Dufour effect on variable viscosity and thermal conductivity of an inclined magnetic field with dissipation in non-Darcy porous medium over a continuously stretching sheet for power-law variation in the sheet temperature and concentration are investigated. The viscosity of the fluid flow and thermal conductivity are considered to vary as a function of temperature. The local similarity solutions for different values of the physical parameters are presented for velocity, temperature and concentration. The result shows that variational increase in the values of Soret and Dufour parameters increase the temperature and concentration distribution. Finally, the effects of skin friction, Nusselt and Sherwood numbers which are of physical and engineering interest are considered and discussed.Keywords: Dufour, non-Darcy Flow, Soret, thermal conductivity, variable viscosity
Procedia PDF Downloads 32910234 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature
Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun
Abstract:
CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.Keywords: NiCoCrAlY coatings, mechanical properties, DBTT, miniature specimen testing
Procedia PDF Downloads 16810233 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Abstract:
When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.Keywords: Chaharmahal and Bakhtiari, climate change, impacts, Iran, milk production
Procedia PDF Downloads 16510232 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.Keywords: borescope, engine, long-wave-infrared, sensor
Procedia PDF Downloads 13310231 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique
Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir
Abstract:
Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid
Procedia PDF Downloads 58410230 Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante
Authors: Maria Teresa Signes Pont, Jose Juan Cortes Plana
Abstract:
Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf).Keywords: xylella fastidiosa, almod tree, temperature, humidity, environmental model
Procedia PDF Downloads 17310229 Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding
Authors: Ahmad K. Jassim, Raheem Kh. Al-Subar
Abstract:
Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created.Keywords: friction, spot, stir, environmental, sustainable, AA1100 aluminum alloy
Procedia PDF Downloads 19410228 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses
Authors: Djamila Aboutaleb, Brahim Safi
Abstract:
In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.Keywords: sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics
Procedia PDF Downloads 33510227 Impact of Iron Doping on Induction Heating during Spark Plasma Sintering
Authors: Hua Tan, David Salamon
Abstract:
In this study, γ-Al2O3 powders doped with various amounts of iron were sintered via SPS process. Two heating modes – auto and manual mode were applied to observe the role of electrical induction on heating. Temperature, electric current, and pulse pattern were experimented with grade iron γ-Al2O3 powders. Phase transformation of γ to α -Al2O3 serves as a direct indicator of internal temperature, independently on measured outside temperature. That pulsing in SPS is also able to induce internal heating due to its strong electromagnetic field when dopants are conductive metals (e.g., iron) is proofed during SPS. Density and microstructure were investigated to explain the mechanism of induction heating. In addition, the role of electric pulsing and strong electromagnetic field on internal heating (induction heating) were compared and discussed. Internal heating by iron doping within electrically nonconductive samples is able to decrease sintering temperature and save energy, furthermore it is one explanation for unique features of this material fabrication technology.Keywords: spark plasma sintering, induction heating, alumina, microstructure
Procedia PDF Downloads 32910226 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy
Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar
Abstract:
We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide
Procedia PDF Downloads 11210225 Customized Temperature Sensors for Sustainable Home Appliances
Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy
Abstract:
Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency
Procedia PDF Downloads 7210224 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures
Authors: Pradeep G. Siddheshwar, K. M. Lakshmi
Abstract:
The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium
Procedia PDF Downloads 32210223 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature
Authors: Mohammed Abed, Rita Nemes, Salem Nehme
Abstract:
The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.Keywords: self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity
Procedia PDF Downloads 13410222 The Effect of Austempering Temperature on Anisotropy of TRIP Steel
Authors: Abdolreza Heidari Noosh Abad, Amir Abedi, Davood Mirahmadi khaki
Abstract:
The high strength and flexibility of TRIP steels are the major reasons for them being widely used in the automobile industry. Deep drawing is regarded as a common metal sheet manufacturing process is used extensively in the modern industry, particularly automobile industry. To investigate the potential of deep drawing characteristic of materials, steel sheet anisotropy is studied and expressed as R-Value. The TRIP steels have a multi-phase microstructure consisting typically of ferrite, bainite and retained austenite. The retained austenite appears to be the most effective phase in the microstructure of the TRIP steels. In the present research, Taguchi method has been employed to study investigates the effect of austempering temperature parameters on the anisotropy property of the TRIP steel. To achieve this purpose, a steel with chemical composition of 0.196C -1.42Si-1.41Mn, has been used and annealed at 810oC, and then austempered at 340-460oC for 3, 6, and 9 minutes. The results shows that the austempering temperature has a direct relationship with R-value, respectively. With increasing austempering temperature, residual austenite grain size increases as well as increased solubility, which increases the amount of R-value. According to the results of the Taguchi method, austempering temperature’s p-value less than 0.05 is due to effective on R-value.Keywords: Taguchi method, hot rolling, thermomechanical process, anisotropy, R-value
Procedia PDF Downloads 32410221 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye
Authors: Vishakha Parihar
Abstract:
This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process
Procedia PDF Downloads 18110220 Microbial Degradation of Lignin for Production of Valuable Chemicals
Authors: Fnu Asina, Ivana Brzonova, Keith Voeller, Yun Ji, Alena Kubatova, Evguenii Kozliak
Abstract:
Lignin, a heterogeneous three-dimensional biopolymer, is one of the building blocks of lignocellulosic biomass. Due to its limited chemical reactivity, lignin is currently processed as a low-value by-product in pulp and paper mills. Among various industrial lignins, Kraft lignin represents a major source of by-products generated during the widely employed pulping process across the pulp and paper industry. Therefore, valorization of Kraft lignin holds great potential as this would provide a readily available source of aromatic compounds for various industrial applications. Microbial degradation is well known for using both highly specific ligninolytic enzymes secreted by microorganisms and mild operating conditions compared with conventional chemical approaches. In this study, the degradation of Indulin AT lignin was assessed by comparing the effects of Basidiomycetous fungi (Coriolus versicolour and Trametes gallica) and Actinobacteria (Mycobacterium sp. and Streptomyces sp.) to two commercial laccases, T. versicolour ( ≥ 10 U/mg) and C. versicolour ( ≥ 0.3 U/mg). After 54 days of cultivation, the extent of microbial degradation was significantly higher than that of commercial laccases, reaching a maximum of 38 wt% degradation for C. versicolour treated samples. Lignin degradation was further confirmed by thermal carbon analysis with a five-step temperature protocol. Compared with commercial laccases, a significant decrease in char formation at 850ºC was observed among all microbial-degraded lignins with a corresponding carbon percentage increase from 200ºC to 500ºC. To complement the carbon analysis result, chemical characterization of the degraded products at different stages of the delignification by microorganisms and commercial laccases was performed by Pyrolysis-GC-MS.Keywords: lignin, microbial degradation, pyrolysis-GC-MS, thermal carbon analysis
Procedia PDF Downloads 41010219 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 14410218 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C
Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner
Abstract:
Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applicationsKeywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity
Procedia PDF Downloads 8110217 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery
Authors: Meet Bhatia
Abstract:
Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection
Procedia PDF Downloads 33410216 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau
Authors: Jiahua Zhang, Qing Chang, Fengmei Yao
Abstract:
Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics andthe adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.Keywords: grassland, phenology, MODIS, eco-geographic regions, elevation, climatic factors, Tibetan Plateau
Procedia PDF Downloads 32110215 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 39210214 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel
Authors: M. I. Equbal, R. K. Ohdar, B. Singh, P. Talukdar
Abstract:
Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Micro-alloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.Keywords: cooling rate, hot forging, micro-alloyed, ring compression
Procedia PDF Downloads 35910213 Proximate Composition and Mineral Contents of Ocimum gratissimum Leaves (African Basil)
Authors: Adebola Ajayi
Abstract:
Ocimum gratissimum belongs to the Lamiaceae family and is know generally as African Basil. Ocimum gratissimum leaves are widely used as local condiments in diets. The leaves were destalked sorted, washed with potable water to remove dirts, air dried for 14 days under ambient temperature and milled into powder. The proximate composition and mineral contents of Ocimum gratissimum leaves were investigated. The proximate analysis showed the moisture, crude, protein, total ash, crude fiber, crude lipid and total carbohydrate contents were 10.72±0.01%, 12.98±0.10%, 10.95±0.42, 10.21±0.04%, 4.81±0.04% and 49.01±0.25% respectively. The results of the analysis showed that Ocimum gratissimum could be a good source of important food nutrients.Keywords: African Basil, drying, Ocimum gratissimum, proximate
Procedia PDF Downloads 20010212 Separate Collection System of Recyclables and Biowaste Treatment and Utilization in Metropolitan Area Finland
Authors: Petri Kouvo, Aino Kainulainen, Kimmo Koivunen
Abstract:
Separate collection system for recyclable wastes in the Helsinki region was ranked second best of European capitals. The collection system includes paper, cardboard, glass, metals and biowaste. Residual waste is collected and used in energy production. The collection system excluding paper is managed by the Helsinki Region Environmental Services HSY, a public organization owned by four municipalities (Helsinki, Espoo, Kauniainen and Vantaa). Paper collection is handled by the producer responsibility scheme. The efficiency of the collection system in the Helsinki region relies on a good coverage of door-to-door-collection. All properties with 10 or more dwelling units are required to source separate biowaste and cardboard. This covers about 75% of the population of the area. The obligation is extended to glass and metal in properties with 20 or more dwelling units. Other success factors include public awareness campaigns and a fee system that encourages recycling. As a result of waste management regulations for source separation of recyclables and biowaste, nearly 50 percent of recycling rate of household waste has been reached. For households and small and medium size enterprises, there is a sorting station fleet of five stations available. More than 50 percent of wastes received at sorting stations is utilized as material. The separate collection of plastic packaging in Finland will begin in 2016 within the producer responsibility scheme. HSY started supplementing the national bring point system with door-to-door-collection and pilot operations will begin in spring 2016. The result of plastic packages pilot project has been encouraging. Until the end of 2016, over 3500 apartment buildings have been joined the piloting, and more than 1800 tons of plastic packages have been collected separately. In the summer 2015 a novel partial flow digestion process combining digestion and tunnel composting was adopted for source separated household and commercial biowaste management. The product gas form digestion process is converted in to heat and electricity in piston engine and organic Rankine cycle process with very high overall efficiency. This paper describes the efficient collection system and discusses key success factors as well as main obstacles and lessons learned as well as the partial flow process for biowaste management.Keywords: biowaste, HSY, MSW, plastic packages, recycling, separate collection
Procedia PDF Downloads 21710211 Node Pair Selection Scheme in Relay-Aided Communication Based on Stable Marriage Problem
Authors: Tetsuki Taniguchi, Yoshio Karasawa
Abstract:
This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.Keywords: relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm
Procedia PDF Downloads 39610210 Using Low-Calorie Gas to Generate Heat and Electricity
Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko
Abstract:
The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization
Procedia PDF Downloads 264