Search results for: hybrid PSO-GA algorithm and mutual information
13291 Designing a Pregnancy Interactive Information Design for a Mobile Application
Authors: Thomas Adi Purnomo Sidhi
Abstract:
The importance of designing a pregnancy interactive information design for a mobile application is felt in order to assist pregnant women to get an easy access of highly credible pregnancy-related information on which often fail to be fulfilled, while it has been a very critical one. Thus, an observation of needs assessment for designing a pregnancy interactive information system design for a mobile application at iOS becomes current objective study. A comparative study of the top five pregnancy interactive information design available at the Apple Store conducted in order to fulfill it. Whilst, an observation of user experiences included for deeper analyzes. Moreover, a literature study conducted to support the arguments that being provided in the current study. The findings, surprisingly, also reveal the advantages of local wisdom in pregnancy that never been attached to those top five applications before.Keywords: information system design, interactive design, local wisdom, pregnancy
Procedia PDF Downloads 18713290 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space
Authors: Nanjiang Chen
Abstract:
In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experi-ence of space. Addressing these gaps, this paper introduces a distinct continuous visibility algorithm, a leap in measuring urban spaces from a human-centric per-spective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this tech-nique allows for a continuous range of visibility assessment, closely mirroring hu-man visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Bei-jing's urban setting. Its key distinction lies in its potential to benefit a broad spec-trum of stakeholders, ranging from urban developers to public policymakers, aid-ing in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.Keywords: visual openness, spatial continuity, ray-tracing algorithms, urban computation
Procedia PDF Downloads 4613289 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct
Procedia PDF Downloads 22513288 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material
Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength
Procedia PDF Downloads 31713287 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila
Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores
Abstract:
This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires
Procedia PDF Downloads 213286 The Searching Artificial Intelligence: Neural Evidence on Consumers' Less Aversion to Algorithm-Recommended Search Product
Authors: Zhaohan Xie, Yining Yu, Mingliang Chen
Abstract:
As research has shown a convergent tendency for aversion to AI recommendation, it is imperative to find a way to promote AI usage and better harness the technology. In the context of e-commerce, this study has found evidence that people show less avoidance of algorithms when recommending search products compared to experience products. This is due to people’s different attribution of mind to AI versus humans, as suggested by mind perception theory. While people hold the belief that an algorithm owns sufficient capability to think and calculate, which makes it competent to evaluate search product attributes that can be obtained before actual use, they doubt its capability to sense and feel, which is essential for evaluating experience product attributes that must be assessed after experience in person. The result of the behavioral investigation (Study 1, N=112) validated that consumers show low purchase intention to experience products recommended by AI. Further consumer neuroscience study (Study 2, N=26) using Event-related potential (ERP) showed that consumers have a higher level of cognitive conflict when faced with AI recommended experience product as reflected by larger N2 component, while the effect disappears for search product. This research has implications for the effective employment of AI recommenders, and it extends the literature on e-commerce and marketing communication.Keywords: algorithm recommendation, consumer behavior, e-commerce, event-related potential, experience product, search product
Procedia PDF Downloads 15313285 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm
Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri
Abstract:
This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction
Procedia PDF Downloads 3113284 Computation of Induction Currents in a Set of Dendrites
Authors: R. B. Mishra, Sudhakar Tripathi
Abstract:
In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.Keywords: currents, dendrites, induction, simulation
Procedia PDF Downloads 39413283 RAPD Analysis of Genetic Diversity of Castor Bean
Authors: M. Vivodík, Ž. Balážová, Z. Gálová
Abstract:
The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.Keywords: dendrogram, polymorphism, RAPD technique, Ricinus communis L.
Procedia PDF Downloads 47113282 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks
Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba
Abstract:
The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.Keywords: authentication, long term evolution, security, vehicle-to-everything
Procedia PDF Downloads 16713281 Overcoming the Impacts of Covid-19 Outbreak Using Value Integrated Project Delivery Model
Authors: G. Ramya
Abstract:
Value engineering is a systematic approach, widely used to optimize the design or process or product in the designing stage. It used to achieve the client's obligation by increasing the functionality and attain the targeted cost in the cost planning. Value engineering effectiveness and benefits decrease along with the progress of the project since the change in the scope of the work and design will account for more cost all along the lifecycle of the project. Integrating the value engineering with other project management activities will promote cost minimization, client satisfaction, and ensure early completion of the project in time. Previous research studies suggested that value engineering can integrate with other project delivery activities, but research studies unable to frame a model that collaborates the project management activities with the job plan of value engineering approach. I analyzed various project management activities and their synergy between each other. The project management activities and processes like a)risk analysis b)lifecycle cost analysis c)lean construction d)facility management e)Building information modelling f)Contract administration, collaborated, and project delivery model planned along with the RIBA plan of work. The key outcome of the research is a value-driven project delivery model, which will succeed in dealing with the economic impact, constraints and conflicts arise due to the COVID-19 outbreak in the Indian construction sector. Benefits associated with the structured framework is construction project delivery that ensures early contractor involvement, mutual risk sharing, and reviving the project with a cost overrun and delay back on track ,are discussed. Keywords: Value-driven project delivery model, Integration, RIBA plan of work Themes: Design EconomicsKeywords: value-driven project delivery model, Integration, RIBA
Procedia PDF Downloads 11913280 Asymmetric Information and Composition of Capital Inflows: Stock Market Microstructure Analysis of Asia Pacific Countries
Authors: Farid Habibi Tanha, Hawati Janor, Mojtaba Jahanbazi
Abstract:
The purpose of this study is to examine the effect of asymmetric information on the composition of capital inflows. This study uses the stock market microstructure to capture the asymmetric information. Such an approach allows one to capture the level and extent of the asymmetric information from a firm’s perspective. This study focuses on the two-dimensional measure of the market microstructure in capturing asymmetric information. The composition of capital inflows is measured by running six models simultaneously. By employing the panel data technique, the main finding of this research shows an increase in the asymmetric information of the stock market, in any of the two dimensions of width and depth. This leads to the reduction of foreign investments in both forms of foreign portfolio investment (FPI) and foreign direct investment (FDI), while the reduction in FPI is higher than that of the FDI. The significant effect of asymmetric information on capital inflows implicitly suggests for policymakers to control the changes of foreign capital inflows through transparency in the level of the market.Keywords: capital flows composition, asymmetric information, stock market microstructure, foreign portfolio investment, foreign direct investment
Procedia PDF Downloads 36413279 Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings
Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Henrik Skov Midtiby, Anders Krogh Mortensen, Sanmohan Baby
Abstract:
This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring a efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were seeded. The field was divided into parcels which was assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spraty; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. In addition approximately 25% of the parcels were seeded with additional weeds perpendicular to the maize rows. In total 299 parcels were randomly assigned with the 28 different treatment combinations. In the statistical analysis, bootstrapping was used for balancing the number of replicates. The achieved potential herbicide savings was found to be 70% to 95% depending on the initial weed coverage. However additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds to turn yellow, instead they only stagnated in growth.Keywords: herbicide reduction, macrosprayer, weed crop discrimination, site-specific, sprayer boom
Procedia PDF Downloads 29813278 Management of Indigenous Knowledge: Expectations of Library and Information Professionals in Developing Countries
Authors: Desmond Chinedu Oparaku, Pearl C. Akanwa, Oyemike Victor Benson
Abstract:
This paper examines the challenges facing library and information centers (LICs) in managing indigenous knowledge in academic libraries in developing countries. The need for managing an indigenous knowledge in library and information centers in developing nations is becoming more critical. There is an ever increasing output of indigenous knowledge; effective management of indigenous knowledge becomes necessary to enable the next generation benefit from them. This paper thus explores the concept of indigenous knowledge (IK), nature of indigenous knowledge (IK), the various forms of indigenous knowledge (IK), sources of indigenous knowledge (IK), and relevance of indigenous knowledge (IK). The expectations of library and information professionals towards effective management of indigenous knowledge and the challenges to effective management of indigenous knowledge were highlighted. Recommendations were made based on the identified challenges.Keywords: library, indigenous knowledge, information centres, information professionals
Procedia PDF Downloads 42213277 Assessment of Trust in Virtual Teams of College Students in Egypt
Authors: Bashayer Alsana
Abstract:
Emerging technologies present human interaction with new challenges. Individuals are required to interact and collaborate to achieve mutual gain. Accomplishing shared goals requires all parties involved to trust others commitment to fulfill their specified obligations. Trust is harder to establish when groups work virtually and members transcend time, space, and culture. This paper identifies the importance of trust in virtual groups of students at Cairo University by exposing them to electronic projects on which they collaborate.Students respond to a survey to assess their range of trust within their teams and how the outcome is affected. Gender differences and other demographic factors are analyzed to understand results and rates of trust. The paper concludes with summarizing factors influencing trust development and possible implications.Keywords: students, teams, trust, virtual
Procedia PDF Downloads 26313276 Pin Count Aware Volumetric Error Detection in Arbitrary Microfluidic Bio-Chip
Authors: Kunal Das, Priya Sengupta, Abhishek K. Singh
Abstract:
Pin assignment, scheduling, routing and error detection for arbitrary biochemical protocols in Digital Microfluidic Biochip have been reported in this paper. The research work is concentrating on pin assignment for 2 or 3 droplets routing in the arbitrary biochemical protocol, scheduling and routing in m × n biochip. The volumetric error arises due to droplet split in the biochip. The volumetric error detection is also addressed using biochip AND logic gate which is known as microfluidic AND or mAND gate. The algorithm for pin assignment for m × n biochip required m+n-1 numbers of pins. The basic principle of this algorithm is that no same pin will be allowed to be placed in the same column, same row and diagonal and adjacent cells. The same pin should be placed a distance apart such that interference becomes less. A case study also reported in this paper.Keywords: digital microfludic biochip, cross-contamination, pin assignment, microfluidic AND gate
Procedia PDF Downloads 27413275 Information Literacy among Faculty and Students of Medical Colleges of Haryana, Punjab and Chandigarh
Authors: Sanjeev Sharma, Suman Lata
Abstract:
With the availability of diverse printed, electronic literature and web sites on medical and health related information, it is impossible for the medical professional to get the information he seeks in the shortest possible time. For all these problems information literacy is the only solution. Thus, information literacy is recognized as an important aspect of medical education. In the present study, an attempt has been made to know the information literacy skills of the faculty and students at medical colleges of Haryana, Punjab and Chandigarh. The scope of the study was confined to the 12 selected medical colleges of three States (Haryana, Punjab, and Chandigarh). The findings of the study were based on the data collected through 1018 questionnaires filled by the respondents of the medical colleges. It was found that Online Medical Websites (such as WebMD, eMedicine and Mayo Clinic etc.) were frequently used by 63.43% of the respondents of Chandigarh which is slightly more than Haryana (61%) and Punjab (55.65%). As well, 30.86% of the respondents of Chandigarh, 27.41% of Haryana and 27.05% of Punjab were familiar with the controlled vocabulary tool; 25.14% respondents of Chandigarh, 23.80% of Punjab, 23.17% of Haryana were familiar with the Boolean operators; 33.05% of the respondents of Punjab, 28.19% of Haryana and 25.14% of Chandigarh were familiar with the use and importance of the keywords while searching an electronic database; and 51.43% of the respondents of Chandigarh, 44.52% of Punjab and 36.29% of Haryana were able to make effective use of the retrieved information. For accessing information in electronic format, 47.74% of the respondents rated their skills high, while the majority of respondents (76.13%) were unfamiliar with the basic search technique i.e. Boolean operator used for searching information in an online database. On the basis of the findings, it was suggested that a comprehensive training program based on medical professionals information needs should be organized frequently. Furthermore, it was also suggested that information literacy may be included as a subject in the health science curriculum so as to make the medical professionals information literate and independent lifelong learners.Keywords: information, information literacy, medical professionals, medical colleges
Procedia PDF Downloads 15713274 A Clinician’s Perspective on Electroencephalography Annotation and Analysis for Driver Drowsiness Estimation
Authors: Ruxandra Aursulesei, David O’Callaghan, Cian Ryan, Diarmaid O’Cualain, Viktor Varkarakis, Alina Sultana, Joseph Lemley
Abstract:
Human errors caused by drowsiness are among the leading causes of road accidents. Neurobiological research gives information about the electrical signals emitted by neurons firing within the brain. Electrical signal frequencies can be determined by attaching bio-sensors to the head surface. By observing the electrical impulses and the rhythmic interaction of neurons with each other, we can predict the mental state of a person. In this paper, we aim to better understand intersubject and intrasubject variability in terms of electrophysiological patterns that occur at the onset of drowsiness and their evolution with the decreasing of vigilance. The purpose is to lay the foundations for an algorithm that detects the onset of drowsiness before the physical signs become apparent.Keywords: electroencephalography, drowsiness, ADAS, annotations, clinician
Procedia PDF Downloads 11513273 Integer Programming: Domain Transformation in Nurse Scheduling Problem.
Authors: Geetha Baskaran, Andrzej Barjiela, Rong Qu
Abstract:
Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum.Keywords: domain transformation, nurse scheduling, information granulation, artificial intelligence, simulation
Procedia PDF Downloads 39713272 Natural Language Processing; the Future of Clinical Record Management
Authors: Khaled M. Alhawiti
Abstract:
This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.Keywords: clinical information, information retrieval, natural language processing, automated applications
Procedia PDF Downloads 40413271 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 26213270 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology
Authors: Peristera Baziana
Abstract:
In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing
Procedia PDF Downloads 29613269 Bag of Words Representation Based on Weighting Useful Visual Words
Authors: Fatma Abdedayem
Abstract:
The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.Keywords: BOW, useful visual words, weighted visual words, bag of visual words
Procedia PDF Downloads 43613268 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines
Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey
Abstract:
The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology
Procedia PDF Downloads 8213267 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 13013266 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application
Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko
Abstract:
During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity
Procedia PDF Downloads 38213265 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets
Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang
Abstract:
Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect
Procedia PDF Downloads 21013264 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete
Authors: Anil Nis, Nilufer Ozyurt Zihnioglu
Abstract:
The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber
Procedia PDF Downloads 22313263 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
A kinetic façade responds to user requirements and environmental conditions. In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization
Procedia PDF Downloads 51713262 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 542