Search results for: gel strength prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5854

Search results for: gel strength prediction

3694 Effective Slab Width for Beam-End Flexural Strength of Composite Frames with Circular-Section Columns

Authors: Jizhi Zhao, Qiliang Zhou, Muxuan Tao

Abstract:

The calculation of the ultimate loading capacity of composite frame beams is an important step in the design of composite frame structural systems. Currently, the plastic limit theory is mainly used for this calculation in the codes adopted by many countries; however, the effective slab width recommended in most codes is based on the elastic theory, which does not accurately reflect the complex stress mechanism at the beam-column joints in the ultimate loading state. Therefore, the authors’ research group put forward the Compression-on-Column-Face mechanism and Tension-on-Transverse-Beam mechanism to explain the mechanism in the ultimate loading state. Formulae are derived for calculating the effective slab width in composite frames with rectangular/square-section columns under ultimate lateral loading. Moreover, this paper discusses the calculation method of the effective slab width for the beam-end flexural strength of composite frames with circular-section columns. The proposed design formula is suitable for exterior and interior joints. Finally, this paper compares the proposed formulae with available formulae in other literature, current design codes, and experimental results, providing the most accurate results to predict the effective slab width and ultimate loading capacity.

Keywords: composite frame structure, effective slab width, circular-section column, design formulae, ultimate loading capacity

Procedia PDF Downloads 128
3693 Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste

Authors: P. Vinayagam, A. Madhanagopal

Abstract:

This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes.

Keywords: ceramic waste, coarse aggregate replacement, glazed stoneware pipe waste, silica fume

Procedia PDF Downloads 288
3692 Fly-Ash/Borosilicate Glass Based Geopolymers: A Mechanical and Microstructural Investigation

Authors: Gianmarco Taveri, Ivo Dlouhy

Abstract:

Geopolymers are well-suited materials to abate CO2 emission coming from the Portland cement production, and then replace them, in the near future, in building and other applications. The cost of production of geopolymers may be seen the only weakness, but the use of wastes as raw materials could provide a valid solution to this problem, as demonstrated by the successful incorporation of fly-ash, a by-product of thermal power plants, and waste glasses. Recycled glass in waste-derived geopolymers was lately employed as a further silica source. In this work we present, for the first time, the introduction of recycled borosilicate glass (BSG). BSG is actually a waste glass, since it derives from dismantled pharmaceutical vials and cannot be reused in the manufacturing of the original articles. Owing to the specific chemical composition (BSG is an ‘alumino-boro-silicate’), it was conceived to provide the key components of zeolitic networks, such as amorphous silica and alumina, as well as boria (B2O3), which may replace Al2O3 and contribute to the polycondensation process. The solid–state MAS NMR spectroscopy was used to assess the extent of boron oxide incorporation in the structure of geopolymers, and to define the degree of networking. FTIR spectroscopy was utilized to define the degree of polymerization and to detect boron bond vibration into the structure. Mechanical performance was tested by means of 3 point bending (flexural strength), chevron notch test (fracture toughness), compression test (compressive strength), micro-indentation test (Vicker’s hardness). Spectroscopy (SEM and Confocal spectroscopy) was performed on the specimens conducted to failure. FTIR showed a characteristic absorption band attributed to the stretching modes of tetrahedral boron ions, whose tetrahedral configuration is compatible to the reaction product of geopolymerization. 27Al NMR and 29Si NMR spectra were instrumental in understanding the extent of the reaction. 11B NMR spectroscopies evidenced a change of the trigonal boron (BO3) inside the BSG in favor of a quasi-total tetrahedral boron configuration (BO4). Thanks to these results, it was inferred that boron is part of the geopolymeric structure, replacing the Si in the network, similarly to the aluminum, and therefore improving the quality of the microstructure, in favor of a more cross-linked network. As expected, the material gained as much as 25% in compressive strength (45 MPa) compared to the literature, whereas no improvements were detected in flexural strength (~ 5 MPa) and superficial hardness (~ 78 HV). The material also exhibited a low fracture toughness (0.35 MPa*m1/2), with a tangible brittleness. SEM micrographies corroborated this behavior, showing a ragged surface, along with several cracks, due to the high presence of porosity and impurities, acting as preferential points for crack initiation. The 3D pattern of the surface fracture, following the confocal spectroscopy, evidenced an irregular crack propagation, whose proclivity was mainly, but not always, to follow the porosity. Hence, the crack initiation and propagation are largely unpredictable.

Keywords: borosilicate glass, characterization, fly-ash, geopolymerization

Procedia PDF Downloads 208
3691 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 75
3690 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: selective laser melting, graphene, composite, mechanical property, tribological property

Procedia PDF Downloads 136
3689 A Qualitative Study of Experienced Early Childhood Teachers Resolving Workplace Challenges with Character Strengths

Authors: Michael J. Haslip

Abstract:

Character strength application improves performance and well-being in adults across industries, but the potential impact of character strength training among early childhood educators is mostly unknown. To explore how character strengths are applied by early childhood educators at work, a qualitative study was completed alongside professional development provided to a group of in-service teachers of children ages 0-5 in Philadelphia, Pennsylvania, United States. Study participants (n=17) were all female. The majority of participants were non-white, in full-time lead or assistant teacher roles, had at least ten years of experience and a bachelor’s degree. Teachers were attending professional development weekly for 2 hours over a 10-week period on the topic of social and emotional learning and child guidance. Related to this training were modules and sessions on identifying a teacher’s character strength profile using the Values in Action classification of 24 strengths (e.g., humility, perseverance) that have a scientific basis. Teachers were then asked to apply their character strengths to help resolve current workplace challenges. This study identifies which character strengths the teachers reported using most frequently and the nature of the workplace challenges being resolved in this context. The study also reports how difficult these challenges were to the teachers and their success rate at resolving workplace challenges using a character strength application plan. The study also documents how teachers’ own use of character strengths relates to their modeling of these same traits (e.g., kindness, teamwork) for children, especially when the nature of the workplace challenge directly involves the children, such as when addressing issues of classroom management and behavior. Data were collected on action plans (reflective templates) which teachers wrote to explain the work challenge they were facing, the character strengths they used to address the challenge, their plan for applying strengths to the challenge, and subsequent results. Content analysis and thematic analysis were used to investigate the research questions using approaches that included classifying, connecting, describing, and interpreting data reported by educators. Findings reveal that teachers most frequently use kindness, leadership, fairness, hope, and love to address a range of workplace challenges, ranging from low to high difficulty, involving children, coworkers, parents, and for self-management. Teachers reported a 71% success rate at fully or mostly resolving workplace challenges using the action plan method introduced during professional development. Teachers matched character strengths to challenges in different ways, with certain strengths being used mostly when the challenge involved children (love, forgiveness), others mostly with adults (bravery, teamwork), and others universally (leadership, kindness). Furthermore, teacher’s application of character strengths at work involved directly modeling character for children in 31% of reported cases. The application of character strengths among early childhood educators may play a significant role in improving teacher well-being, reducing job stress, and improving efforts to model character for young children.

Keywords: character strengths, positive psychology, professional development, social-emotional learning

Procedia PDF Downloads 105
3688 The Applications and Effects of the Career Courses of Taiwanese College Students with LEGO® SERIOUS PLAY®

Authors: Payling Harn

Abstract:

LEGO® SERIOUS PLAY® is a kind of facilitated workshop of thinking and problem-solving approach. Participants built symbolic and metaphorical brick models in response to tasks given by the facilitator and presented these models to other participants. LEGO® SERIOUS PLAY® applied the positive psychological mechanism of Flow and positive emotions to help participants perceiving self-experience and unknown fact and increasing the happiness of life by building bricks and narrating story. At present, LEGO® SERIOUS PLAY® is often utilized for facilitating professional identity and strategy development to assist workers in career development. The researcher desires to apply LEGO® SERIOUS PLAY® to the career courses of college students in order to promote their career ability. This study aimed to use the facilitative method of LEGO® SERIOUS PLAY® to develop the career courses of college students, then explore the effects of Taiwanese college students' positive and negative emotions, career adaptabilities, and career sense of hope by LEGO® SERIOUS PLAY® career courses. The researcher regarded strength as the core concept and use the facilitative mode of LEGO® SERIOUS PLAY® to develop the 8 weeks’ career courses, which including ‘emotion of college life’ ‘career highlights’, ‘career strengths’, ‘professional identity’, ‘business model’, ‘career coping’, ‘strength guiding principles’, ‘career visions’,’ career hope’, etc. The researcher will adopt problem-oriented teaching method to give tasks which according to the weekly theme, use the facilitative mode of LEGO® SERIOUS PLAY® to guide participants to respond tasks by building bricks. Then participants will conduct group discussions, reports, and writing reflection journals weekly. Participants will be 24 second-grade college students. They will attend LEGO® SERIOUS PLAY® career courses for 2 hours a week. The researcher used’ ‘Career Adaptability Scale’ and ‘Career Hope Scale’ to conduct pre-test and post-test. The time points of implementation testing will be one week before courses starting, one day after courses ending respectively. Then the researcher will adopt repeated measures one-way ANOVA for analyzing data. The results revealed that the participants significantly presented immediate positive effect in career adaptability and career hope. The researcher hopes to construct the mode of LEGO® SERIOUS PLAY® career courses by this study and to make a substantial contribution to the future career teaching and researches of LEGO® SERIOUS PLAY®.

Keywords: LEGO® SERIOUS PLAY®, career courses, strength, positive and negative affect, career hope

Procedia PDF Downloads 253
3687 Abdominal Exercises Can Modify Abdominal Function in Postpartum Women: A Randomized Control Trial Comparing Curl-up to Drawing-in Combined With Diaphragmatic Aspiration

Authors: Yollande Sènan Djivoh, Dominique de Jaeger

Abstract:

Background: Abdominal exercises are commonly practised nowadays. Specific techniques of abdominal muscles strengthening like hypopressive exercises have recently emerged and their practice is encouraged against the practice of Curl-up especially in postpartum. The acute and the training effects of these exercises did not allow to advise one exercise to the detriment of another. However, physiotherapists remain reluctant to perform Curl-up with postpartum women because of its potential harmful effect on the pelvic floor. Design: This study was a randomized control trial registered under the number PACTR202110679363984. Objective: to observe the training effect of two experimental protocols (Curl-up versus Drawing-in+Diaphragmatic aspiration) on the abdominal wall (interrecti distance, rectus and transversus abdominis thickness, abdominal strength) in Beninese postpartum women. Pelvic floor function (tone, endurance, urinary incontinence) will be assessed to evaluate potential side effects of exercises on the pelvic floor. Method: Postpartum women diagnosed with diastasis recti were randomly assigned to one of three groups (Curl-up, Drawingin+Diaphragmatic aspiration and control). Abdominal and pelvic floor parameters were assessed before and at the end of the 6-week protocol. The interrecti distance and the abdominal muscles thickness were assessed by ultrasound and abdominal strength by dynamometer. Pelvic floor tone and strength were assessed with Biofeedback and urinary incontinence was quantified by pad test. To compare the results between the three groups and the two measurements, a two-way Anova test with repeated measures was used (p<0.05). When interaction was significant, a posthoc using Student t test, with Bonferroni correction, was used to compare the three groups regarding the difference (end value minus initial value). To complete these results, a paired Student t test was used to compare in each group the initial and end values. Results: Fifty-eight women participated in this study, divided in three groups with similar characteristics regarding their age (29±5 years), parity (2±1 children), BMI (26±4 kg/m2 ), time since the last birth (10±2 weeks), weight of their baby at birth (330±50 grams). Time effect and interaction were significant (p<0.001) for all abdominal parameters. Experimental groups improved more than control group. Curl-up group improved more (p=0.001) than Drawing-in+Diaphragmatic aspiration group regarding the interrecti distance (9.3±4.2 mm versus 6.6±4.6 mm) and abdominal strength (20.4±16.4 Newton versus 11.4±12.8 Newton). Drawingin+Diaphragmatic aspiration group improved (0.8±0.7 mm) more than Curl-up group (0.5±0.7 mm) regarding the transversus abdominis thickness (p=0.001). Only Curl-up group improved (p<0.001) the rectus abdominis thickness (1.5±1.2 mm). For pelvic floor parameters, both experimental groups improved (p=0.01) except for tone which improved (p=0.03) only in Drawing-in+Diaphragmatic aspiration group from 19.9±4.1 cmH2O to 22.2±4.5 cmH2O. Conclusion: Curl-up was more efficient to improve abdominal function than Drawingin+Diaphragmatic aspiration. However, these exercises are complementary. None of them degraded the pelvic floor, but Drawing-in+Diaphragmatic aspiration improved further the pelvic floor function. Clinical implications: Curl-up, Drawing-in and Diaphragmatic aspiration can be used for the management of abdominal function in postpartum women. Exercises must be chosen considering the specific needs of each woman’s abdominal and pelvic floor function.

Keywords: curl-up, drawing-in, diaphragmatic aspiration, hypopressive exercise, postpartum women

Procedia PDF Downloads 82
3686 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure

Authors: Esra Zengin, Sinan Akkar

Abstract:

Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.

Keywords: ground motion selection, scaling, uncertainty, fragility curve

Procedia PDF Downloads 583
3685 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
3684 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 142
3683 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 136
3682 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 252
3681 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials

Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner

Abstract:

Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.

Keywords: CO₂ curing, carbonation, CCU, steel slag

Procedia PDF Downloads 104
3680 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
3679 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 435
3678 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study

Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar

Abstract:

Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.

Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis

Procedia PDF Downloads 62
3677 Model Evaluation of Action Potential Block in Whole-Animal Nerves Induced by Ultrashort, High-Intensity Electric Pulses

Authors: Jiahui Song

Abstract:

There have been decades of research into the action potential block in nerves. To our best knowledge electrical voltages can reversibly block the conduction of action potentials across whole animal nerves. Blocking biological electrical signaling pathways can have a variety of applications in muscular and sensory incapacitation and clinical research, including urethral pressure reduction and relieving chronic pain relief from a peripheral nerve injury. The cessation ability has been used in muscle activation and fatigue reduction. Ultrashort, high-intensity electric pulses modulate the membrane conductivity to block nerve conduction through the electroporation process. Nanopore formation on the membrane surface would increase the local membrane conductivity and effectively "short-out" the trans-membrane potential of a nerve that inhibits action potential propagation. This block would be similar in concept to stopping the propagation of an air-pressure wave down a "leaky" pipe. This research focuses on a distributed electrical model with an additional time-dependent membrane conductance to calculate the poration induced by the ultrashort, high-intensity electric pulses. The changes in membrane conductivity are used to predict changes in action potential transmission. A "strength-duration (SD)" curve is generated for action potential blockage and would be used as a design guide for benchmarking safety thresholds or setting the pulse voltage and/or durations necessary for neuro-muscular incapacitation.

Keywords: action potential, ultrashort, high-intensity, nerve, strength-duration

Procedia PDF Downloads 18
3676 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
3675 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 186
3674 Seismic Response of Structures of Reinforced Concrete Buildings: Regular and Irregular Configurations

Authors: Abdelhammid Chibane

Abstract:

Often, for architectural reasons or designs, several buildings have a non-uniform profile in elevation. Depending on the configuration of the construction and the arrangements structural elements, the non-uniform profile in elevation (the recess) is considered concept of a combination of non-uniform distributions of strength, stiffness, weight and geometry along the height of irregular structures. Therefore, this type of configuration can induce irregular distribution load causing a serious concentration stresses at the discontinuity. This therefore requires a serious behavioral treatment buildings in an earthquake. If appropriate measures are not taken into account, structural irregularity may become a major source of damage during earthquakesEarth. In the past, several research investigations have identified differences in dynamic response of irregular and regular porches. Among the most notable differences are the increments of displacements and ductility applications in floors located above the level of the shoulder and an increase in the contribution of the higher modes cisaillement1 efforts, ..., 10. The para -ssismiques codes recommend the methods of analysis Dynamic (or modal history) to establish the forces of calculation instead of the static method equivalent, which is basically applicable only to regular structures without major discontinuities in the mass, rigidity and strength along the height 11, 12 .To investigate the effects of irregular profiles on the structures, the main objective of this study was the assessment of the inelastic response, in terms of applications of ductility four types of non-uniform multi-stage structures subjected to relatively severe earthquakes. In the This study, only the parallel responses are analyzed setback.

Keywords: buildings, concentration stresses, ductility, ductility, designs, irregular structures

Procedia PDF Downloads 262
3673 Bio Composites for Substituting Synthetic Packaging Materials

Authors: Menonjyoti Kalita, Pradip Baishya

Abstract:

In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.

Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM

Procedia PDF Downloads 90
3672 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 175
3671 Association between Healthy Eating Index-2015 Scores and the Probability of Sarcopenia in Community-Dwelling Iranian Elderly

Authors: Zahra Esmaeily, Zahra Tajari, Shahrzad Daei, Mahshid Rezaei, Atefeh Eyvazkhani, Marjan Mansouri Dara, Ahmad Reza Dorosty Motlagh, Andriko Palmowski

Abstract:

Objective: Sarcopenia (SPA) is associated with frailty and disability in the elderly. Adherence to current dietary guidelines in addition to physical activity could play a role in the prevention of muscle wasting and weakness. The Healthy Eating Index-2015 (HEI) is a tool to assess diet quality as recommended in the U.S. Dietary Guidelines for Americans. This study aimed to investigate whether there is a relationship between HEI scores and the probability of SPA (PS) among the Tehran elderly. Method: A previously validated semi-quantitative food frequency questionnaire was used to assess HEI and the dietary intake of randomly selected elderly people living in Tehran, Iran. Handgrip strength (HGS) was measured to evaluate the PS. Statistical evaluation included descriptive analysis and standard test procedures. Result: 201 subjects were included. Those probably suffering from SPA (as determined by HGS) had significantly lower HEI scores (p = 0.02). After adjusting for confounders, HEI scores and HGS were still significantly associated (adjusted R2 = 0.56, slope β = 0.03, P = 0.09). Elderly people with a low probability of SPA consumed more monounsaturated and polyunsaturated fatty acids (P = 0.06) and ingested less added sugars and saturated fats (P = 0.01 and P = 0.02, respectively). Conclusion: In this cross-sectional study, HEI scores are associated with the probability of SPA. Adhering to current dietary guidelines might contribute to ameliorating muscle strength and mass in aging individuals.

Keywords: aging, HEI-2015, Iranian, sarcopenic

Procedia PDF Downloads 207
3670 Stability of Concrete Moment Resisting Frames in View of Current Codes Requirements

Authors: Mahmoud A. Mahmoud, Ashraf Osman

Abstract:

In this study, the different approaches currently followed by design codes to assess the stability of buildings utilizing concrete moment resisting frames structural system are evaluated. For such purpose, a parametric study was performed. It involved analyzing group of concrete moment resisting frames having different slenderness ratios (height/width ratios), designed for different lateral loads to vertical loads ratios and constructed using ordinary reinforced concrete and high strength concrete for stability check and overall buckling using code approaches and computer buckling analysis. The objectives were to examine the influence of such parameters that directly linked to frames’ lateral stiffness on the buildings’ stability and evaluates the code approach in view of buckling analysis results. Based on this study, it was concluded that, the most susceptible buildings to instability and magnification of second order effects are buildings having high aspect ratios (height/width ratio), having low lateral to vertical loads ratio and utilizing construction materials of high strength. In addition, the study showed that the instability limits imposed by codes are mainly mathematical to ensure reliable analysis not a physical ones and that they are in general conservative. Also, it has been shown that the upper limit set by one of the codes that second order moment for structural elements should be limited to 1.4 the first order moment is not justified, instead, the overall story check is more reliable.

Keywords: buckling, lateral stability, p-delta, second order

Procedia PDF Downloads 257
3669 Bioethanol Production from Wild Sorghum (Sorghum arundinacieum) and Spear Grass (Heteropogon contortus)

Authors: Adeyinka Adesanya, Isaac Bamgboye

Abstract:

There is a growing need to develop the processes to produce renewable fuels and chemicals due to the economic, political, and environmental concerns associated with fossil fuels. Lignocellulosic biomass is an excellent renewable feedstock because it is both abundant and inexpensive. This project aims at producing bioethanol from lignocellulosic plants (Sorghum Arundinacieum and Heteropogon Contortus) by biochemical means, computing the energy audit of the process and determining the fuel properties of the produced ethanol. Acid pretreatment (0.5% H2SO4 solution) and enzymatic hydrolysis (using malted barley as enzyme source) were employed. The ethanol yield of wild sorghum was found to be 20% while that of spear grass was 15%. The fuel properties of the bioethanol from wild sorghum are 1.227 centipoise for viscosity, 1.10 g/cm3 for density, 0.90 for specific gravity, 78 °C for boiling point and the cloud point was found to be below -30 °C. That of spear grass was 1.206 centipoise for viscosity, 0.93 g/cm3 for density 1.08 specific gravity, 78 °C for boiling point and the cloud point was also found to be below -30 °C. The energy audit shows that about 64 % of the total energy was used up during pretreatment, while product recovery which was done manually demanded about 31 % of the total energy. Enzymatic hydrolysis, fermentation, and distillation total energy input were 1.95 %, 1.49 % and 1.04 % respectively, the alcoholometric strength of bioethanol from wild sorghum was found to be 47 % and the alcoholometric strength of bioethanol from spear grass was 72 %. Also, the energy efficiency of the bioethanol production for both grasses was 3.85 %.

Keywords: lignocellulosic biomass, wild sorghum, spear grass, biochemical conversion

Procedia PDF Downloads 236
3668 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
3667 In Vitro Morphogenic Response of the Alginate Encapsulated Nodal Segment and Antioxidative Enzymes Analysis during Acclimatization of Cassia Angustifolia Vahl

Authors: Iram Siddique

Abstract:

Synthetic seed technology is an alternative to traditional micropropagation for production and delivery of cloned plantlets. Synthetic seeds were produced by encapsulating nodal segments of C. angustifolia in calcium alginate gel. 3% (w/v) sodium alginate and 100 mM CaCl2. 2H2O were found most suitable for encapsulation of nodal segments. Synthetic seeds cultured on half strength Murashige and Skoog (MS) medium supplemented with thidiazuron (5.0 µM) + indole -3- acetic acid (1.0 µM) produced maximum number of shoots (10.9 ± 0.78) after 8 weeks of culture exhibiting (78%) in vitro conversion response. Encapsulated nodal segments demonstrated successful regeneration after different period (1-6 weeks) of cold storage at 4 °C. The synthetic seeds stored at 4 °C for a period of 4 weeks resulted in maximum conversion frequency (93%) after 8 weeks when placed back to regeneration medium. The isolated shoots when cultured on half strength MS medium supplemented with 1.0 µM indole -3- butyric acid (IBA), produced healthy roots and plantlets with well developed shoot and roots were successfully hardened off in plastic pots containing sterile soilrite inside the growth chamber and gradually transferred to greenhouse where they grew well with 85% survival rate. Changes in the content of photosynthetic pigments, net photosynthetic rate (PN), superoxide dismutase (SOD) and catalase (CAT) activity in C. angustifolia indicated the adaptation of micropropagated plants to ex vitro conditions.

Keywords: biochemical studies, nodal segments, rooting, synthetic seeds, thidiazuron

Procedia PDF Downloads 360
3666 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members

Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim

Abstract:

In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length

Procedia PDF Downloads 295
3665 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384