Search results for: ethanol extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2508

Search results for: ethanol extract

348 Automation of Savitsky's Method for Power Calculation of High Speed Vessel and Generating Empirical Formula

Authors: M. Towhidur Rahman, Nasim Zaman Piyas, M. Sadiqul Baree, Shahnewaz Ahmed

Abstract:

The design of high-speed craft has recently become one of the most active areas of naval architecture. Speed increase makes these vehicles more efficient and useful for military, economic or leisure purpose. The planing hull is designed specifically to achieve relatively high speed on the surface of the water. Speed on the water surface is closely related to the size of the vessel and the installed power. The Savitsky method was first presented in 1964 for application to non-monohedric hulls and for application to stepped hulls. This method is well known as a reliable comparative to CFD analysis of hull resistance. A computer program based on Savitsky’s method has been developed using MATLAB. The power of high-speed vessels has been computed in this research. At first, the program reads some principal parameters such as displacement, LCG, Speed, Deadrise angle, inclination of thrust line with respect to keel line etc. and calculates the resistance of the hull using empirical planning equations of Savitsky. However, some functions used in the empirical equations are available only in the graphical form, which is not suitable for the automatic computation. We use digital plotting system to extract data from nomogram. As a result, value of wetted length-beam ratio and trim angle can be determined directly from the input of initial variables, which makes the power calculation automated without manually plotting of secondary variables such as p/b and other coefficients and the regression equations of those functions are derived by using data from different charts. Finally, the trim angle, mean wetted length-beam ratio, frictional coefficient, resistance, and power are computed and compared with the results of Savitsky and good agreement has been observed.

Keywords: nomogram, planing hull, principal parameters, regression

Procedia PDF Downloads 403
347 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 109
346 Satureja bachtiarica Bunge Induce Apoptosis via Mitochondrial Intrinsic Pathway and G1 Cell Cycle Arrest

Authors: Hamed Karimian, Noraziah Nordin, Mohamad Ibrahim Noordin, Syam Mohan, Mahboubeh Razavi, Najihah Mohd Hashim, Happipah Mohd Ali

Abstract:

Satureja bachtiarica Bunge is a perennial medicinal plant belonging to the Lamiaceae family and endemic species in Iran. Satureja bachtiarica Bunge with the local name of Marzeh koohi is edible vegetable use as flavoring agent, anti-bacterial and to relieve cough and indigestion. In this study, the anti-cancer effect of Satureja bachtiarica Bunge on the MDA-MB-231 cell line as an Breast cancer cell model has been analyzed for the first time. Satureja bachtiarica Bunge was extracted using different solvents in the order of increasing polarity. Cytotoxicity activity of hexane extract of Satureja bachtiarica Bunge (SBHE) was observed using MTT assay. Acridine orange/Propidium iodide staining was used to detect early apoptosis; Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS), with Annexin-Vserving as a marker for apoptotic cells. Caspase 3/7, 8 and-9 assays showed significantly activation of caspase-9 where lead intrinsic mitochondrial pathway. Bcl-2/Bax expressions and cell cycle arrest were also investigated. SBHE had exhibited significantly higher cytotoxicity against MDA-MB-231 Cell line compare to other cell lines. A significant increase in chromatin condensation in the cell nucleus was observed by fluorescence analysis. Treatment of MDA-MB-231 cells with SBHE encouraged apoptosis, by down-regulating Bcl-2 and up-regulating Bax, which lead the activation of caspase 9. Moreover, SBHE treatment significantly arrested MDA-MB-231 cells in the G1 phase. Together, the results presented in this study demonstrated that SBHE inhibited the proliferation of MDA-MB-231 cells, leading cell cycle arrest and programmed cell death, which was confirmed to be through the mitochondrial pathway.

Keywords: Satureja bachtiarica Bunge, MDA-MB-231, apoptosis, annexin-V, cell cycle

Procedia PDF Downloads 335
345 Research on Hangzhou Commercial Center System Based on Point of Interest Data

Authors: Chen Wang, Qiuxiao Chen

Abstract:

With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.

Keywords: business center system, business format, main city of Hangzhou, POI extraction method

Procedia PDF Downloads 139
344 Analysis and Identification of Trends in Electric Vehicle Crash Data

Authors: Cody Stolle, Mojdeh Asadollahipajouh, Khaleb Pafford, Jada Iwuoha, Samantha White, Becky Mueller

Abstract:

Battery-electric vehicles (BEVs) are growing in sales and popularity in the United States as an alternative to traditional internal combustion engine vehicles (ICEVs). BEVs are generally heavier than corresponding models of ICEVs, with large battery packs located beneath the vehicle floorpan, a “skateboard” chassis, and have front and rear crush space available in the trunk and “frunk” or front trunk. The geometrical and frame differences between the vehicles may lead to incompatibilities with gasoline vehicles during vehicle-to-vehicle crashes as well as run-off-road crashes with roadside barriers, which were designed to handle lighter ICEVs with higher centers-of-mass and with dedicated structural chasses. Crash data were collected from 10 states spanning a five-year period between 2017 and 2021. Vehicle Identification Number (VIN) codes were processed with the National Highway Traffic Safety Administration (NHTSA) VIN decoder to extract BEV models from ICEV models. Crashes were filtered to isolate only vehicles produced between 2010 and 2021, and the crash circumstances (weather, time of day, maximum injury) were compared between BEVs and ICEVs. In Washington, 436,613 crashes were identified, which satisfied the selection criteria, and 3,371 of these crashes (0.77%) involved a BEV. The number of crashes which noted a fire were comparable between BEVs and ICEVs of similar model years (0.3% and 0.33%, respectively), and no differences were discernable for the time of day, weather conditions, road geometry, or other prevailing factors (e.g., run-off-road). However, crashes involving BEVs rose rapidly; 31% of all BEV crashes occurred in just 2021. Results indicate that BEVs are performing comparably to ICEVs, and events surrounding BEV crashes are statistically indistinguishable from ICEV crashes.

Keywords: battery-electric vehicles, transportation safety, infrastructure crashworthiness, run-off-road crashes, ev crash data analysis

Procedia PDF Downloads 87
343 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 99
342 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 239
341 Reintroduction and in vitro Propagation of Declapeis arayalpathra: A Critically Endangered Plant of Western Ghats, India

Authors: Zishan Ahmad, Anwar Shahzad

Abstract:

The present studies describe a protocol for high frequency in vitro propagation through nodal segments and shoot tips in D. arayalpathra, a critically endangered medicinal liana of the Western Ghats, India. Nodal segments were more responsive than shoot tips in terms of shoot multiplication. Murashige and Skoog’s (MS) basal medium supplemented with 2.5 µM 6-benzyladenine (BA) was optimum for shoot induction through both the explants. Among different combinations of plant growth regulator (PGRs) and growth additive screened, MS medium supplemented with BA (2.5 µM) + indole-3-acetic acid (IAA) (0.25 µM) + adenine sulphate (ADS) (10.0 µM) induced a maximum of 9.0 shoots per nodal segment and 3.9 shoots per shoot tip with mean shoot length of 8.5 and 3.9 cm respectively. Half-strength MS medium supplemented with Naphthaleneacetic acid (NAA) (2.5 µM) was the best for in vitro root induction. After successful acclimatization in SoilriteTM, 92 % plantlets were survived in field conditions. Acclimatized plantlets were studied for chlorophyll and carotenoid content, net photosynthetic rate (PN) and related attributes such as stomatal conductance (Gs) and transpiration rate during subsequent days of acclimatization. The rise and fall of different biochemical enzymes (SOD, CAT, APX and GR) were also studies during successful days of acclimatization. Moreover, the effect of acclimatization on the synthesis of 2-hydroxy-4-methoxy benzaldehyde (2H4MB) was also studied in relation to the biomass production. Maximum fresh weight (2.8 gm/plant), dry weight (0.35 gm/plant) of roots and 2H4MB content (8.5 µg/ ml of root extract) were recorded after 8 weeks of acclimatization. The screening of in vitro raised plantlet root was also carried out by using GC-MS analysis which witnessed more than 25 compounds. The regenerated plantlets were also screened for homogeneity by using RAPD and ISSR. The proposed protocol surely can be used for the conservation and commercial production of the plant.

Keywords: 6-benzyladenine, PGRs, RAPD, 2H4MB

Procedia PDF Downloads 193
340 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure

Authors: Q. Giraud, J. Gonçalvès, B. Paris

Abstract:

Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.

Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media

Procedia PDF Downloads 173
339 Feasibility of Phenolic Acids Rich Fraction from Gynura procumbens as Potential Antihyperlipidemic Agent

Authors: Vikneswaran Murugaiyah, Sultan Ayesh Mohammed Saghir, Kisantini Murugesu, Mohd. Zaini Asmawi, Amirin Sadikun

Abstract:

Gynura procumbens is a popular medicinal plant used as a folk medicine in Southeast Asia to treat kidney diseases, diabetes mellitus and hyperlipidemia. The present study aims to investigate the antihyperlipidemic potential of phenolic acids rich fraction (PARF) from G. procumbens in chemically-induced acute and high fat diet-induced chronic hyperlipidemic rats. Ethanolic extract of G. procumbens leaves exhibited significant reductions in total cholesterol (TC) and triglycerides (TG) levels (P < 0.01 and P < 0.001, respectively) of poloxamer 407-induced rats compared to hyperlipidemic control after 58 h of treatment. Upon bioactivity guided fractionation the antihyperlipidemic activity was found to be concentrated in the PARF, which significantly reduced the TC and TG levels (P < 0.001). HPLC analysis revealed that 3,5-dicaffeoylquinic acid; 4,5-dicaffeoylquinic acid and chlorogenic acid are the major compounds in the PARF. Likewise, chlorogenic acid (60 mg/kg) exhibited significant reductions in TC and TG levels of hyperlipidemic rats (P < 0.001). Both chlorogenic acid and PARF significantly reduced LDL, VLDL and atherogenic index (P<0.01), while PARF increased the HDL (P < 0.01) compared to hyperlipidemic control. Both were found to be not cytotoxic against normal and cancer cell lines. In addition, LD50 of orally administered PARF was more than 5,000 mg/kg. Further investigation in high fat diet-induced chronic hyperlipidemic rats revealed that chronic administration of PARF dose-dependently restored the increase in lipids parameters. In summary, the phenolic acids rich fraction of G. procumbens leaves showed promising antihyperlipidemic effect in both chemically- and diet-induced hyperlipidemic rats that warrants further elucidation on its mechanisms of action.

Keywords: Antihyperlipidemic, Gynura procumbens, phenolic acids, chlorogenic acid, poloxamer-407, high fat diet

Procedia PDF Downloads 230
338 Molecular Genetic Purity Test Using SSR Markers in Pigeon Pea

Authors: Rakesh C. Mathad, G. Y. Lokesh, Basavegowda

Abstract:

In agriculture using quality seeds of improved varieties is very important to ensure higher productivity thereby food security and sustainability. To ensure good productivity, seeds should have characters as described by the breeder. To know whether the characters as described by the breeder are expressing in a variety such as genuineness or genetic purity, field grow out test (GOT) is done. In pigeon pea which is long durational crop, conducting a GOT may take very long time and expensive also. Since in pigeon pea flower character is a most distinguishing character from the contaminants, conducting a field grow out test require 120-130 days or till flower emergence, which may increase cost of storage and seed production. This will also delay the distribution of seed inventory to the pigeon pea growing areas. In this view during 2014-15 with financial support of Govt. of Karnataka, India, a project to develop a molecular genetic test for newly developed variety of pigeon pea cv.TS3R was commissioned at Seed Unit, UAS, Raichur. A molecular test was developed with the help SSR markers to identify pure variety from possible off types in newly released pigeon pea variety TS3R. In the investigation, 44 primer pairs were screened to identify the specific marker associated with this variety. Pigeon pea cv. TS3R could be clearly identified by using the primer CCM 293 based on the banding pattern resolved on gel electrophoresis and PCR reactions. However some of the markers like AHSSR 46, CCM 82 and CCM 57 can be used to test other popular varieties in the region like Asha, GRG-811 and Maruti respectively. Further to develop this in to a lab test, the seed sample size was standardized to 200 seeds and a grow out matrix was developed. This matrix was used to sample 12 days old leaves to extract DNA. The lab test results were validated with actual field GOT test results and found variations within the acceptable limit of 1%. This molecular method can now be employed to test the genetic purity in pigeon pea cv TS3R which reduces the time and can be a cheaper alternative method for field GOT.

Keywords: genuineness, grow-out matrix, molecular genetic purity, SSR markers

Procedia PDF Downloads 283
337 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 231
336 Adolescent Obesity Leading to Adulthood Cardiovascular Diseases among Punjabi Population

Authors: Manpreet Kaur, Badaruddoza, Sandeep Kaur Brar

Abstract:

The increasing prevalence of adolescent obesity is one of the major causes to be hypertensive in adulthood. Various statistical methods have been applied to examine the performance of anthropometric indices for the identification of adverse cardiovascular risk profile. The present work was undertaken to determine the significant traditional risk factors through principal component factor analysis (PCFA) among population based Punjabi adolescents aged 10-18 years. Data was collected among adolescent children from different schools situated in urban areas of Punjab, India. Principal component factor analysis (PCFA) was applied to extract orthogonal components from anthropometric and physiometric variables. Association between components were explained by factor loadings. The PCFA extracted four factors, which explained 84.21%, 84.06% and 83.15% of the total variance of the 14 original quantitative traits among boys, girls and combined subjects respectively. Factor 1 has high loading of the traits that reflect adiposity such as waist circumference, BMI and skinfolds among both sexes. However, waist circumference and body mass index are the indicator of abdominal obesity which increases the risk of cardiovascular diseases. The loadings of these two traits have found maximum in girls adolescents (WC=0.924; BMI=0.905). Therefore, factor 1 is the strong indicator of atherosclerosis in adolescents. Factor 2 is predominantly loaded with blood pressures and related traits (SBP, DBP, MBP and pulse rate) which reflect the risk of essential hypertension in adolescent girls and combined subjects, whereas, factor 2 loaded with obesity related traits in boys (weight and hip circumferences). Comparably, factor 3 is loaded with blood pressures in boys and with height and WHR in girls, while factor 4 contains high loading of pulse pressure among boys, girls and combined group of adolescents.

Keywords: adolescent obesity, cvd, hypertension, punjabi population

Procedia PDF Downloads 369
335 Principal Component Analysis of Body Weight and Morphometric Traits of New Zealand Rabbits Raised under Semi-Arid Condition in Nigeria

Authors: Emmanuel Abayomi Rotimi

Abstract:

Context: Rabbits production plays important role in increasing animal protein supply in Nigeria. Rabbit production provides a cheap, affordable, and healthy source of meat. The growth of animals involves an increase in body weight, which can change the conformation of various parts of the body. Live weight and linear measurements are indicators of growth rate in rabbits and other farm animals. Aims: This study aimed to define the body dimensions of New Zealand rabbits and also to investigate the morphometric traits variables that contribute to body conformation by the use of principal component analysis (PCA). Methods: Data were obtained from 80 New Zealand rabbits (40 bucks and 40 does) raised in Livestock Teaching and Research Farm, Federal University Dutsinma. Data were taken on body weight (BWT), body length (BL), ear length (EL), tail length (TL), heart girth (HG) and abdominal circumference (AC). Data collected were subjected to multivariate analysis using SPSS 20.0 statistical package. Key results: The descriptive statistics showed that the mean BWT, BL, EL, TL, HG, and AC were 0.91kg, 27.34cm, 10.24cm, 8.35cm, 19.55cm and 21.30cm respectively. Sex showed significant (P<0.05) effect on all the variables examined, with higher values recorded for does. The phenotypic correlation coefficient values (r) between the morphometric traits were all positive and ranged from r = 0.406 (between EL and BL) to r = 0.909 (between AC and HG). HG is the most correlated with BWT (r = 0.786). The principal component analysis with variance maximizing orthogonal rotation was used to extract the components. Two principal components (PCs) from the factor analysis of morphometric traits explained about 80.42% of the total variance. PC1 accounted for 64.46% while PC2 accounted for 15.97% of the total variances. Three variables, representing body conformation, loaded highest in PC1. PC1 had the highest contribution (64.46%) to the total variance, and it is regarded as body conformation traits. Conclusions: This component could be used as selection criteria for improving body weight of rabbits.

Keywords: conformation, multicollinearity, multivariate, rabbits and principal component analysis

Procedia PDF Downloads 128
334 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 429
333 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges

Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch

Abstract:

Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.

Keywords: big data interpretation, datathon, systems toxicology, verification

Procedia PDF Downloads 277
332 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease

Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah

Abstract:

Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.

Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor

Procedia PDF Downloads 242
331 A Theoretical Study on Pain Assessment through Human Facial Expresion

Authors: Mrinal Kanti Bhowmik, Debanjana Debnath Jr., Debotosh Bhattacharjee

Abstract:

A facial expression is undeniably the human manners. It is a significant channel for human communication and can be applied to extract emotional features accurately. People in pain often show variations in facial expressions that are readily observable to others. A core of actions is likely to occur or to increase in intensity when people are in pain. To illustrate the changes in the facial appearance, a system known as Facial Action Coding System (FACS) is pioneered by Ekman and Friesen for human observers. According to Prkachin and Solomon, a set of such actions carries the bulk of information about pain. Thus, the Prkachin and Solomon pain intensity (PSPI) metric is defined. So, it is very important to notice that facial expressions, being a behavioral source in communication media, provide an important opening into the issues of non-verbal communication in pain. People express their pain in many ways, and this pain behavior is the basis on which most inferences about pain are drawn in clinical and research settings. Hence, to understand the roles of different pain behaviors, it is essential to study the properties. For the past several years, the studies are concentrated on the properties of one specific form of pain behavior i.e. facial expression. This paper represents a comprehensive study on pain assessment that can model and estimate the intensity of pain that the patient is suffering. It also reviews the historical background of different pain assessment techniques in the context of painful expressions. Different approaches incorporate FACS from psychological views and a pain intensity score using the PSPI metric in pain estimation. This paper investigates in depth analysis of different approaches used in pain estimation and presents different observations found from each technique. It also offers a brief study on different distinguishing features of real and fake pain. Therefore, the necessity of the study lies in the emerging fields of painful face assessment in clinical settings.

Keywords: facial action coding system (FACS), pain, pain behavior, Prkachin and Solomon pain intensity (PSPI)

Procedia PDF Downloads 345
330 (Anti)Depressant Effects of Non-Steroidal Antiinflammatory Drugs in Mice

Authors: Horia Păunescu

Abstract:

Purpose: The study aimed to assess the depressant or antidepressant effects of several Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in mice: the selective cyclooxygenase-2 (COX-2) inhibitor meloxicam, and the non-selective COX-1 and COX-2 inhibitors lornoxicam, sodium metamizole, and ketorolac. The current literature data regarding such effects of these agents are scarce. Materials and methods: The study was carried out on NMRI mice weighing 20-35 g, kept in a standard laboratory environment. The study was approved by the Ethics Committee of the University of Medicine and Pharmacy „Carol Davila”, Bucharest. The study agents were injected intraperitoneally, 10 mL/kg body weight (bw) 1 hour before the assessment of the locomotor activity by cage testing (n=10 mice/ group) and 2 hours before the forced swimming tests (n=15). The study agents were dissolved in normal saline (meloxicam, sodium metamizole), ethanol 11.8% v/v in normal saline (ketorolac), or water (lornoxicam), respectively. Negative and positive control agents were also given (amitryptilline in the forced swimming test). The cage floor used in the locomotor activity assessment was divided into 20 equal 10 cm squares. The forced swimming test involved partial immersion of the mice in cylinders (15/9cm height/diameter) filled with water (10 cm depth at 28C), where they were left for 6 minutes. The cage endpoint used in the locomotor activity assessment was the number of treaded squares. Four endpoints were used in the forced swimming test (immobility latency for the entire 6 minutes, and immobility, swimming, and climbing scores for the final 4 minutes of the swimming session), recorded by an observer that was "blinded" to the experimental design. The statistical analysis used the Levene test for variance homogeneity, ANOVA and post-hoc analysis as appropriate, Tukey or Tamhane tests.Results: No statistically significant increase or decrease in the number of treaded squares was seen in the locomotor activity assessment of any mice group. In the forced swimming test, amitryptilline showed an antidepressant effect in each experiment, at the 10 mg/kg bw dosage. Sodium metamizole was depressant at 100 mg/kg bw (increased the immobility score, p=0.049, Tamhane test), but not in lower dosages as well (25 and 50 mg/kg bw). Ketorolac showed an antidepressant effect at the intermediate dosage of 5 mg/kg bw, but not so in the dosages of 2.5 and 10 mg/kg bw, respectively (increased the swimming score, p=0.012, Tamhane test). Meloxicam and lornoxicam did not alter the forced swimming endpoints at any dosage level. Discussion: 1) Certain NSAIDs caused changes in the forced swimming patterns without interfering with locomotion. 2) Sodium metamizole showed a depressant effect, whereas ketorolac proved antidepressant. Conclusion: NSAID-induced mood changes are not class effects of these agents and apparently are independent of the type of inhibited cyclooxygenase (COX-1 or COX-2). Disclosure: This paper was co-financed from the European Social Fund, through the Sectorial Operational Programme Human Resources Development 2007-2013, project number POSDRU /159 /1.5 /S /138907 "Excellence in scientific interdisciplinary research, doctoral and postdoctoral, in the economic, social and medical fields -EXCELIS", coordinator The Bucharest University of Economic Studies.

Keywords: antidepressant, depressant, forced swim, NSAIDs

Procedia PDF Downloads 232
329 Analyzing Safety Incidents using the Fatigue Risk Index Calculator as an Indicator of Fatigue within a UK Rail Franchise

Authors: Michael Scott Evans, Andrew Smith

Abstract:

The feeling of fatigue at work could potentially have devastating consequences. The aim of this study was to investigate whether the well-established objective indicator of fatigue – the Fatigue Risk Index (FRI) calculator used by the rail industry is an effective indicator to the number of safety incidents, in which fatigue could have been a contributing factor. The study received ethics approval from Cardiff University’s Ethics Committee (EC.16.06.14.4547). A total of 901 safety incidents were recorded from a single British rail franchise between 1st June 2010 – 31st December 2016, into the Safety Management Information System (SMIS). The safety incident types identified that fatigue could have been a contributing factor were: Signal Passed at Danger (SPAD), Train Protection & Warning System (TPWS) activation, Automatic Warning System (AWS) slow to cancel, failed to call, and station overrun. From the 901 recorded safety incidents, the scheduling system CrewPlan was used to extract the Fatigue Index (FI) score and Risk Index (RI) score of all train drivers on the day of the safety incident. Only the working rosters of 64.2% (N = 578) (550 men and 28 female) ranging in age from 24 – 65 years old (M = 47.13, SD = 7.30) were accessible for analyses. Analysis from all 578 train drivers who were involved in safety incidents revealed that 99.8% (N = 577) of Fatigue Index (FI) scores fell within or below the identified guideline threshold of 45 as well as 97.9% (N = 566) of Risk Index (RI) scores falling below the 1.6 threshold range. Their scores represent good practice within the rail industry. These findings seem to indicate that the current objective indicator, i.e. the FRI calculator used in this study by the British rail franchise was not an effective predictor of train driver’s FI scores and RI scores, as safety incidents in which fatigue could have been a contributing factor represented only 0.2% of FI scores and 2.1% of RI scores. Further research is needed to determine whether there are other contributing factors that could provide a better indication as to why there is such a significantly large proportion of train drivers who are involved in safety incidents, in which fatigue could have been a contributing factor have such low FI and RI scores.

Keywords: fatigue risk index calculator, objective indicator of fatigue, rail industry, safety incident

Procedia PDF Downloads 180
328 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 218
327 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 82
326 Biological Control of Woolly Apple Aphid, Eriosoma Lanigerum (Hausmann) in the Nursery Production of Spruce

Authors: Snezana Rajkovic, Miroslava Markovic, Ljubinko Rakonjac, Aleksandar Lucic, Radoslav Rajkovic

Abstract:

Woolly apple aphid, Eriosoma lanigerum (Hausmann) is a widely distributed pest of apple trees, especially where its parasites have been killed by insecticides. It can also be found on pear, hawthorn, mountain ash, and elm trees. Relatively small to medium-sized aphids, characterized by a reddish-brown body, a blood-red stain when crushed and a fluffy, flocculent wax covering. Specialized dermal glands produce the characteristic fluffy or powdery wax, which gives E. lanigerum its characteristic 'woolly' appearance. Also, woolly apple aphid is a problemm in nursery production of spure.The experiments were carried out in the nursery “Nevade” in Gornji Milanovac, "Srbijasume" on the spruce seedlings, aged 2 years. In this study, organic insecticide King Bo, aqueous solution (a. i. oxymatrine 0.2% + psoralen 0.4%), manufacturer Beijing Kingbo Biotech Co. Ltd., Beijing, China. extracted from plants and used as pesticides in nursery production were investigated. King Bo, bioinsecticide is manufactured from refined natural herbal extract several wild medicinal plants, such as Sophora flavescens Ait, Veratrum nigrum L, A. Carmichael, etc. Oxymatrine 2.4 SL is a stomach poison that has antifeeding and repellent action. This substance stimulates development and growth in a host plant and also controls the appearance of downy mildew.The trials were set according to instructions of methods-monitoring of changes in the number of larvae and adults compared to before treatment. The treatment plan was made according to fully randomized block design. The experiment was conducted in four repetitions. The basic plot had the area of 25 m2. Phytotoxicity was estimated by PP methods 1/135 (2), the intensity of infection according to Towsend-Heuberger, the efficiency by Abbott, the analysis of variance with Ducan test and PP/181 (2).

Keywords: bioinsecticide, efficacy, nurssery production, woolly apple aphid

Procedia PDF Downloads 547
325 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 160
324 Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values

Authors: Xin Wu, Yongfeng Zhao, Qingxiang Meng

Abstract:

In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition.

Keywords: chemical compositions, crop residues, efficient energy values, steam explosion

Procedia PDF Downloads 247
323 Determination of the Volatile Organic Compounds, Antioxidant and Antimicrobial Properties of Microwave-Assisted Green Extracted Ficus Carica Linn Leaves

Authors: Pelin Yilmaz, Gizemnur Yildiz Uysal, Elcin Demirhan, Belma Ozbek

Abstract:

The edible fig plant, Ficus carica Linn, belongs to the Moraceae family, and the leaves are mainly considered agricultural waste after harvesting. It has been demonstrated in the literature that fig leaves contain appealing properties such as high vitamins, fiber, amino acids, organic acids, and phenolic or flavonoid content. The extraction of these valuable products has gained importance. Microwave-assisted extraction (MAE) is a method using microwave energy to heat the solvents, thereby transferring the bioactive compounds from the sample to the solvent. The main advantage of the MAE is the rapid extraction of bioactive compounds. In the present study, the MAE was applied to extract the bioactive compounds from Ficus carica L. leaves, and the effect of microwave power (180-900 W), extraction time (60-180 s), and solvent to sample amount (mL/g) (10-30) on the antioxidant property of the leaves. Then, the volatile organic component profile was determined at the specified extraction point. Additionally, antimicrobial studies were carried out to determine the minimum inhibitory concentration of the microwave-extracted leaves. As a result, according to the data obtained from the experimental studies, the highest antimicrobial properties were obtained under the process parameters such as 540 W, 180 s, and 20 mL/g concentration. The volatile organic compound profile showed that isobergapten, which belongs to the furanocoumarins family exhibiting anticancer, antioxidant, and antimicrobial activity besides promoting bone health, was the main compound. Acknowledgments: This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2021-4409. The authors would like to acknowledge the financial support from Tubitak 1515 - Frontier R&D Laboratory Support Programme.

Keywords: Ficus carica Linn leaves, volatile organic component, GC-MS, microwave extraction, isobergapten, antimicrobial

Procedia PDF Downloads 79
322 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense

Authors: Abdullah Al-Nassri, Ahmed Al-Alawi

Abstract:

Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.

Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR

Procedia PDF Downloads 68
321 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy

Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai

Abstract:

Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.

Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy

Procedia PDF Downloads 139
320 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 510
319 A Bayesian Approach for Analyzing Academic Article Structure

Authors: Jia-Lien Hsu, Chiung-Wen Chang

Abstract:

Research articles may follow a simple and succinct structure of organizational patterns, called move. For example, considering extended abstracts, we observe that an extended abstract usually consists of five moves, including Background, Aim, Method, Results, and Conclusion. As another example, when publishing articles in PubMed, authors are encouraged to provide a structured abstract, which is an abstract with distinct and labeled sections (e.g., Introduction, Methods, Results, Discussions) for rapid comprehension. This paper introduces a method for computational analysis of move structures (i.e., Background-Purpose-Method-Result-Conclusion) in abstracts and introductions of research documents, instead of manually time-consuming and labor-intensive analysis process. In our approach, sentences in a given abstract and introduction are automatically analyzed and labeled with a specific move (i.e., B-P-M-R-C in this paper) to reveal various rhetorical status. As a result, it is expected that the automatic analytical tool for move structures will facilitate non-native speakers or novice writers to be aware of appropriate move structures and internalize relevant knowledge to improve their writing. In this paper, we propose a Bayesian approach to determine move tags for research articles. The approach consists of two phases, training phase and testing phase. In the training phase, we build a Bayesian model based on a couple of given initial patterns and the corpus, a subset of CiteSeerX. In the beginning, the priori probability of Bayesian model solely relies on initial patterns. Subsequently, with respect to the corpus, we process each document one by one: extract features, determine tags, and update the Bayesian model iteratively. In the testing phase, we compare our results with tags which are manually assigned by the experts. In our experiments, the promising accuracy of the proposed approach reaches 56%.

Keywords: academic English writing, assisted writing, move tag analysis, Bayesian approach

Procedia PDF Downloads 330