Search results for: co-authorship network analysis
29022 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks
Authors: Van Trieu, Shouhuai Xu, Yusheng Feng
Abstract:
Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.Keywords: causality, multilevel graph, cyber-attacks, prediction
Procedia PDF Downloads 15729021 The Efects of Viable Marketing on Sustainable Development
Authors: Gabriela Tutuanu
Abstract:
The economic, social and environmental undesirable impact of the existing development pattern pushes to the adoption and use of a new development paradigm that of sustainable development. This paper intends to substantiate how the marketing can help the sustainable development. It begins with the subjects of sustainable development and sustainable marketing as they are discussed in literature. The sustainable development is a three dimensional concept which embeds the economic dimension, the social dimension and the environmental dimension that ask to have in view the simultaneous pursuit of economic prosperity, social equity and environmental quality. A major challenge to achieve these goals at business level and to integrate all three dimensions of sustainability is the sustainable marketing. The sustainable marketing is a relationship marketing that aims at building lasting relationships with the social and natural environment on a long-term thinking and futurity and this philosophy allows helping all three dimensions of sustainability. As marketing solutions that could contribute to the sustainable development. We advance the stimulation of sustainable demand, the constant innovation and improvement of sustainable products, the design and use of customized communication, a multichannel distribution network and the sale of sustainable products and services at fair prices. Their implementation will increase the economic, social and environmental sustainability at a large extent in the future if they are supported by political, governmental and legal authorities.Keywords: sustainable development, sustainable marketing, sustainable demand, sustainable product, credible communication, multi-channel distribution network, fair price
Procedia PDF Downloads 47529020 New Mahalle – A More Urban Green Inclusive Neighborhood
Authors: Eirini Oikonomopoulou
Abstract:
Paper is dealing with gentrification of a poor central historic district of Fener and Balat in Istanbul, Turkey and propose ålans and principles of a neighborhood. Istanbul is located in a special geographic place, just in the meeting of Europe and Asia and it has a long and great history, facts that had affected the urban form of the city. Trough the time different civilizations inhabited in the city and they changed it by giving different character to its parts. The modernization of Istanbul brought western ideas into the historic organic urban fabric and put in the first priority the need for a clear and strong car-road/highway network in order to improve the car accessibility along the city. Following that model, transformation of public spaces was based on the driving experience. New public spaces was formulated to be the new symbol of Turkish Republic, to give a beautiful and clean image of the modern Turkish city, as well as work as landmarks across the highway network. Even if city is upgraded, bad quality neighborhoods still exist, far and near to the historic city center. One of them is Fener/Balat, which is located in Fatih district on the European side of Istanbul. This project aims to analyze the urban qualities of that neighborhood (mahalle) and propose a better, qualitative urban space towards a denser, greener and more inclusive neighborhood which could be an example for the whole city.Keywords: urban design, upgrade neighborhood, Istanbul, sustanability
Procedia PDF Downloads 51929019 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study
Authors: Mohamed H. Khalil
Abstract:
Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.Keywords: GIS Web-Based, base-map, water network, decision support system
Procedia PDF Downloads 9829018 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety
Authors: Ashraf Aly
Abstract:
The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues
Procedia PDF Downloads 6829017 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade
Abstract:
The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.Keywords: social relations, social support networks, industrial division, capital allocation, public space
Procedia PDF Downloads 15729016 Viscoelastic Behaviour of Hyaluronic Acid Copolymers
Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu
Abstract:
The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.Keywords: copolymer, viscoelasticity, gelation, 3D network
Procedia PDF Downloads 28729015 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships
Authors: Jake Gonzalez, Tommy Dang
Abstract:
This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights
Procedia PDF Downloads 6229014 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).Keywords: activation function, universal approximation function, neural networks, convergence
Procedia PDF Downloads 16029013 Urban Freight Station: An Innovative Approach to Urban Freight
Authors: Amit Kumar Jain, Surbhi Jain
Abstract:
The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.Keywords: congestion, urban freight, intelligent transport system, pollution
Procedia PDF Downloads 30329012 Methodologies, Findings, Discussion, and Limitations in Global, Multi-Lingual Research: We Are All Alone - Chinese Internet Drama
Authors: Patricia Portugal Marques de Carvalho Lourenco
Abstract:
A three-phase methodological multi-lingual path was designed, constructed and carried out using the 2020 Chinese Internet Drama Series We Are All Alone as a case study. Phase one, the backbone of the research, comprised of secondary data analysis, providing the structure on which the next two phases would be built on. Phase one incorporated a Google Scholar and a Baidu Index analysis, Star Network Influence Index and Mydramalist.com top two drama reviews, along with an article written about the drama and scrutiny of Chinese related blogs and websites. Phase two was field research elaborated across Latin Europe, and phase three was social media focused, having into account that perceptions are going to be memory conditioned based on past ideas recall. Overall, research has shown the poor cultural expression of Chinese entertainment in Latin Europe and demonstrated the inexistence of Chinese content in French, Italian, Portuguese and Spanish Business to Consumer retailers; a reflection of their low significance in Latin European markets and the short-life cycle of entertainment products in general, bubble-gum, disposable goods without a mid to long-term effect in consumers lives. The process of conducting comprehensive international research was complex and time-consuming, with data not always available in Mandarin, the researcher’s linguistic deficiency, limited Chinese Cultural Knowledge and cultural equivalence. Despite steps being taken to minimize the international proposed research, theoretical limitations concurrent to Latin Europe and China still occurred. Data accuracy was disputable; sampling, data collection/analysis methods are heterogeneous; ascertaining data requirements and the method of analysis to achieve a construct equivalence was challenging and morose to operationalize. Secondary data was also not often readily available in Mandarin; yet, in spite of the array of limitations, research was done, and results were produced.Keywords: research methodologies, international research, primary data, secondary data, research limitations, online dramas, china, latin europe
Procedia PDF Downloads 6829011 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm
Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei
Abstract:
This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network
Procedia PDF Downloads 67029010 Modeling of Hydraulic Networking of Water Supply Subsystem Case of Addis Ababa
Authors: Solomon Weldegebriel Gebrelibanos
Abstract:
Water is one of the most important substances in human life that can give a human liberality with its cost and availability. Water comes from rainfall and runoff and reaches the ground as runoff that is stored in a river, ponds, and big water bodies, including sea and ocean and the remaining water portion is infiltrated into the ground to store in the aquifer. Water can serve human beings in various ways, including irrigation, water supply, hydropower and soon. Water supply is the main pillar of the water service to the human being. Water supply distribution in Addis Ababa arises from Legedadi, Akakai, and Gefersa. The objective of the study is to measure the performance of the water supply distribution in Addis Ababa city. The water supply distribution model is developed by computer-aided design software. The model can analyze the operational change, loss of water, and performance of the network. The two design criteria that have been employed to analyze the network system are velocity and pressure. The result shows that the customers are using the water at high pressure with low demand. The water distribution system is older than the expected service life with more leakage. Hence the study recommended that fixing Pressure valves and new distribution facilities can resolve the performance of the water supply systemKeywords: distribution, model, pressure, velocity
Procedia PDF Downloads 13829009 Societal Resilience Assessment in the Context of Critical Infrastructure Protection
Authors: Hannah Rosenqvist, Fanny Guay
Abstract:
Critical infrastructure protection has been an important topic for several years. Programmes such as the European Programme for Critical Infrastructure Protection (EPCIP), Critical Infrastructure Warning Information Network (CIWIN) and the European Reference Network for Critical Infrastructure Protection (ENR-CIP) have been the pillars to the work done since 2006. However, measuring critical infrastructure resilience has not been an easy task. This has to do with the fact that the concept of resilience has several definitions and is applied in different domains such as engineering and social sciences. Since June 2015, the EU project IMPROVER has been focusing on developing a methodology for implementing a combination of societal, organizational and technological resilience concepts, in the hope to increase critical infrastructure resilience. For this paper, we performed research on how to include societal resilience as a form of measurement of the context of critical infrastructure resilience. Because one of the main purposes of critical infrastructure (CI) is to deliver services to the society, we believe that societal resilience is an important factor that should be considered when assessing the overall CI resilience. We found that existing methods for CI resilience assessment focus mainly on technical aspects and therefore that is was necessary to develop a resilience model that take social factors into account. The model developed within the project IMPROVER aims to include the community’s expectations of infrastructure operators as well as information sharing with the public and planning processes. By considering such aspects, the IMPROVER framework not only helps operators to increase the resilience of their infrastructures on the technical or organizational side, but aims to strengthen community resilience as a whole. This will further be achieved by taking interdependencies between critical infrastructures into consideration. The knowledge gained during this project will enrich current European policies and practices for improved disaster risk management. The framework for societal resilience analysis is based on three dimensions for societal resilience; coping capacity, adaptive capacity and transformative capacity which are capacities that have been recognized throughout a widespread literature review in the field. A set of indicators have been defined that describe a community’s maturity within these resilience dimensions. Further, the indicators are categorized into six community assets that need to be accessible and utilized in such a way that they allow responding to changes and unforeseen circumstances. We conclude that the societal resilience model developed within the project IMPROVER can give a good indication of the level of societal resilience to critical infrastructure operators.Keywords: community resilience, critical infrastructure protection, critical infrastructure resilience, societal resilience
Procedia PDF Downloads 23129008 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 12329007 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 16329006 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 12829005 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals
Authors: Naser Safdarian, Nader Jafarnia Dabanloo
Abstract:
In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition
Procedia PDF Downloads 45829004 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation
Authors: Mahmut Yildirim
Abstract:
This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection
Procedia PDF Downloads 7529003 Effect of Media on Psycho-Social Interaction among the Children with Their Parents of Urban People in Dhaka
Authors: Nazma Sultana
Abstract:
Social media has become an important part of our daily life. It has a significance influences on the people who use them in their daily life frequently. The number of people using social network sites has been increasing continuously. For this frequent utilization has started to affect our social life. This study examine whether the use of social network sites affects the psychosocial interaction between children and their parents. At first parents introduce their children to the internet and different type of device in their early childhood. Many parents use device for feeding their children by watching rhyme or cartoon. As a result children are habituate with it. In Bangladesh 70% people are heavy internet users. About 23 percent of them spend more than five hours on the social networking sites a day. Media are increasing pervasive in the lives of children-roughly the average child today spends nearly about 45 hours per week with media, compared with 17 hours with parents and 30 hours in school. According to a social learning theory, children & adolescents learn by observing & imitating what they see on screen particularly when these behaviors are realistic or are rewarded. The influence of the media on the psychosocial development of children is profound. Thus it is important for parents to provide guidance on age-appropriate use of all media, including television, radio, music, video games and the internet.Keywords: social media, psychosocial, Technology, Parent, Social Relationship, Adolescents, Teenage, Youth
Procedia PDF Downloads 11429002 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 12929001 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid
Procedia PDF Downloads 44729000 The Effect of the Addition of Additives on the Properties of Bisamide Organogels
Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal
Abstract:
Organogels are formed by the assembly of low molecular weight gelators (LMWG) into fibrous structures. The assembly of these molecules into crystalline fibrous structures occurs as a result of reversible interactions such as π-stacking, hydrogen-bonding, and van der Waals interactions. Bisamide organogelators with two amide groups have been used as one of LMWGs which show efficient assembly behavior via hydrogen bonding for network formation, the formation of a crystalline network for solvent entrapment. In this study, different bisamide gelators with different lengths of alkyl chains have been added to the bisamide parent gels. The effect of the addition of bisamide additives on the gelation of bisamide gels is described. Investigation of the thermal properties of the gels by differential scanning calorimetry and dropping ball techniques indicated that the bisamide gels can be formed by the addition of a high concentration of the second bisamide components. The microstructure of the gels with different gelator components has been visualized with scanning electron microscopy (SEM) which has shown systematic woven, platelet-like, and a combination of those morphologies for different gels. Examining the addition of a range of bisamide additives with different structural characteristics than the parent bisamide gels has confirmed the effect of the molecular structure on the morphology of the bisamide gels and their final properties.Keywords: bisamide organogelator additives, gel morphology, gel properties, self-assembly
Procedia PDF Downloads 20428999 Analysis of the Social Impact of Agro-Allied Industries on the Rural Dwellers in Benue State, Nigeria
Authors: Ali Ocholi
Abstract:
The study was conducted to analyze the impact of agro-allied industries on rural dwellers in Benue state, Nigeria. Stratified random sampling technique was used to select the respondents for the study. Primary data were collected through the use of structured questionnaires administered on 366 respondents from the selected communities; the data were analyzed using both descriptive and inferential statistics. The result of Mann-Whitney (U) statistics showed that water availability (14350) and good road network (15082.00) were the only social impact derived from the industries by the rural dwellers. The study recommended that right and proper policies and programmes should be put in place by the government to mandate all private and public agro-allied industries to embark on projects that would be in favour of the rural dwellers where the agro-allied industries are situated.Keywords: agriculture, agro-allied industry, rural dwellers, Benue state
Procedia PDF Downloads 25328998 A Wideband CMOS Power Amplifier with 23.3 dB S21, 10.6 dBm Psat and 12.3% PAE for 60 GHz WPAN and 77 GHz Automobile Radar Systems
Authors: Yo-Sheng Lin, Chien-Chin Wang, Yun-Wen Lin, Chien-Yo Lee
Abstract:
A wide band power amplifier (PA) for 60 GHz and 77 GHz direct-conversion transceiver using standard 90 nm CMOS technology is reported. The PA comprises a cascode input stage with a wide band T-type input-matching network and inductive interconnection and load, followed by a common-source (CS) gain stage and a CS output stage. To increase the saturated output power (PSAT) and power-added efficiency (PAE), the output stage adopts a two-way power dividing and combining architecture. Instead of the area-consumed Wilkinson power divider and combiner, miniature low-loss transmission-line inductors are used at the input and output terminals of each of the output stages for wide band input and output impedance matching to 100 ohm. This in turn results in further PSAT and PAE enhancement. The PA consumes 92.2 mW and achieves maximum power gain (S21) of 23.3 dB at 56 GHz, and S21 of 21.7 dB and 14 dB, respectively, at 60 GHz and 77 GHz. In addition, the PA achieves excellent saturated output power (PSAT) of 10.6 dB and maximum power added efficiency (PAE) of 12.3% at 60 GHz. At 77 GHz, the PA achieves excellent PSAT of 10.4 dB and maximum PAE of 6%. These results demonstrate the proposed wide band PA architecture is very promising for 60 GHz wireless personal local network (WPAN) and 77 GHz automobile radar systems.Keywords: 60 GHz, 77 GHz, PA, WPAN, automotive radar
Procedia PDF Downloads 57528997 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery
Authors: Jan-Peter Mund, Christian Kind
Abstract:
In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data
Procedia PDF Downloads 8928996 Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company
Authors: Atefeh Pourshafie, Homayoun Bakhtiari
Abstract:
The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction.Keywords: power, distribution network, reliability, outage
Procedia PDF Downloads 47528995 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 36228994 Application of GPRS in Water Quality Monitoring System
Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan
Abstract:
Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.Keywords: multiparameter sensor, GPRS, visual basic software, RS232
Procedia PDF Downloads 41428993 A Critical Geography of Reforestation Program in Ghana
Authors: John Narh
Abstract:
There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.Keywords: translocality, deforestation, forest management, social network
Procedia PDF Downloads 98