Search results for: capital strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5188

Search results for: capital strength

3028 A Numerical Study of Adherend Geometry on the Stress Distribution in Adhesively Lap Joint

Authors: Ahmet Calik

Abstract:

In present study, the effect of adherend geometry on the tensile strength of adhesively single lap aluminum structures joint, bonded was numerically studied using by three dimensional finite element model. Six joint model were investigated. Analyses were performed in ANSYS commercial software. The results shows that the adherends shape has the highest effect on peel and shear stresses.

Keywords: adhesive, adherend, single lap joints, finite element

Procedia PDF Downloads 288
3027 The Symbolic Power of the IMF: Looking through Argentina’s New Period of Indebtedness

Authors: German Ricci

Abstract:

The research aims to analyse the symbolic power of the International Monetary Fund (IMF) in its relationship with a borrowing country, drawing upon Pierre Bourdieu’s Field Theory. This theory of power, typical of constructivist structuralism, has been minor used in international relations. Thus, selecting this perspective offers a new understanding of how the IMF's power operates and is structured. The IMF makes periodic economic reviews in which the staff evaluates the Government's performance. It also offers “last instance” loans when private external credit is not accessible. This relationship generates great expectations in financial agents because the IMF’s statements indicate the capacity of the Nation-State to meet its payment obligations (or not). Therefore, it is argued that the IMF is a legitimate actor for financial agents concerned about a government facing an economic crisis both for the effects of its immediate economic contribution through loans and the promotion of adjustment programs, helpful to guarantee the payment of the external debt. This legitimacy implies a symbolic power relationship in addition to the already known economic power relationship. Obtaining the IMF's consent implies that the government partially puts its political-economic decisions into play since the monetary policy must be agreed upon with the Fund. This has consequences at the local level. First, it implies that the debtor state must establish a daily relationship with the Fund. This everyday interaction with the Fund influences how officials and policymakers internalize the meaning of political management. On the other hand, if the Government has access to the IMF's seal of approval, the State will be again in a position to re-enter the financial market and go back into debt to face external debt. This means that private creditors increase the chances of collecting the debt and, again, grant credits. Thus, it is argued that the borrowing country submits to the relationship with the IMF in search of the latter's economic and symbolic capital. Access to this symbolic capital has objective and subjective repercussions at the national level that might tend to reproduce the relevance of the financial market and legitimizes the IMF’s intervention during economic crises. The paper has Argentina as its case study, given its historical relationship with the IMF and the relevance of the current indebtedness period, which remains largely unexplored. Argentina’s economy is characterized by recurrent financial crises, and it is the country to which the Fund has lent the most in its entire history. It surpasses more than three times the second, Egypt. In addition, Argentina is currently the country that owes the most to the Fund after receiving the largest loan ever granted by the IMF in 2018, and a new agreement in 2022. While the historical strong association with the Fund culminated in the most acute economic and social crisis in the country’s contemporary history, producing an unprecedented political and institutional crisis in 2001, Argentina still recognized the IMF as the only way out during economic crises.

Keywords: IMF, fields theory, symbolic power, Argentina, Bourdieu

Procedia PDF Downloads 67
3026 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film

Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga

Abstract:

Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.

Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery

Procedia PDF Downloads 60
3025 Effect of Supplementation of Hay with Noug Seed Cake (Guizotia abyssinica), Wheat Bran and Their Mixtures on Feed Utilization, Digestiblity and Live Weight Change in Farta Sheep

Authors: Fentie Bishaw Wagayie

Abstract:

This study was carried out with the objective of studying the response of Farta sheep in feed intake and live weight change when fed on hay supplemented with noug seed cake (NSC), wheat bran (WB), and their mixtures. The digestibility trial of 7 days and 90 days of feeding trial was conducted using 25 intact male Farta sheep with a mean initial live weight of 16.83 ± 0.169 kg. The experimental animals were arranged randomly into five blocks based on the initial live weight, and the five treatments were assigned randomly to each animal in a block. Five dietary treatments used in the experiment comprised of grass hay fed ad libitum (T1), grass hay ad libitum + 300 g DM WB (T2), grass hay ad libitum + 300 g DM (67% WB: 33% NSC mixture) (T3), grass hay ad libitum + 300 g DM (67% NSC: 33% WB) (T4) and 300 g DM/ head/day NSC (T5). Common salt and water were offered ad libitum. The supplements were offered twice daily at 0800 and 1600 hours. The experimental sheep were kept in individual pens. Supplementation of NSC, WB, and their mixtures significantly increased (p < 0.01) the total dry matter (DM) (665.84-788 g/head/day) and (p < 0.001) crude protein (CP) intake. Unsupplemented sheep consumed significantly higher (p < 0.01) grass hay DM (540.5g/head/day) as compared to the supplemented treatments (365.8-488 g/h/d), except T2. Among supplemented sheep, T5 had significantly higher (p < 0.001) CP intake (99.98 g/head/day) than the others (85.52-90.2 g/head/day). Supplementation significantly improved (p < 0.001) the digestibility of CP (66.61-78.9%), but there was no significant effect (p > 0.05) on DM, OM, NDF, and ADF digestibility between supplemented and control treatments. Very low CP digestibility (11.55%) observed in the basal diet (grass hay) used in this study indicated that feeding sole grass hay could not provide nutrients even for the maintenance requirement of growing sheep. Significant final and daily live weight gain (p < 0.001) in the range of 70.11-82.44 g/head/day was observed in supplemented Farta sheep, but unsupplemented sheep lost weight by 9.11g/head/day. Numerically, among the supplemented treatments, sheep supplemented with a higher proportion of NSC in T4 (201 NSC + 99 g WB) gained more weight than the rest, though not statistically significant (p > 0.05). The absence of statistical difference in daily body weight gain between all supplemented sheep indicated that the supplementation of NSC, WB, and their mixtures had similar potential to provide nutrients. Generally, supplementation of NSC, WB, and their mixtures to the basal grass hay diet improved feed conversion ratio, total DM intake, CP intake, and CP digestibility, and it also improved the growth performance with a similar trend for all supplemented Farta sheep over the control group. Therefore, from a biological point of view, to attain the required level of slaughter body weight within a short period of the growing program, sheep producer can use all the supplement types depending upon their local availability, but in the order of priority, T4, T5, T3, and T2, respectively. However, based on partial budget analysis, supplementation of 300 g DM/head /day NSC (T5) could be recommended as profitable for producers with no capital limitation, whereas T4 supplementation (201 g NSC + 99 WB DM/day) is recommended when there is capital scarcity.

Keywords: weight gain, supplement, Farta sheep, hay as basal diet

Procedia PDF Downloads 57
3024 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels

Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain

Abstract:

The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.

Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde

Procedia PDF Downloads 259
3023 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites

Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy

Abstract:

In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl  by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and  as cast hybrid composites.

Keywords: beryl, graphene, heat treatment, mechanical properties

Procedia PDF Downloads 142
3022 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 459
3021 Microalgae Technology for Nutraceuticals

Authors: Weixing Tan

Abstract:

Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.

Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances

Procedia PDF Downloads 151
3020 Managing Climate Change: Vulnerability Reduction or Resilience Building

Authors: Md Kamrul Hassan

Abstract:

Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.

Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability

Procedia PDF Downloads 189
3019 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness

Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra

Abstract:

Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.

Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy

Procedia PDF Downloads 458
3018 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach

Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde

Abstract:

Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.

Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment

Procedia PDF Downloads 207
3017 Vertical Village Buildings as Sustainable Strategy to Re-Attract Mega-Cities in Developing Countries

Authors: M. J. Eichner, Y. S. Sarhan

Abstract:

Overall study purpose has been the evaluation of ‘Vertical Villages’ as a new sustainable building typology, reducing significantly negative impacts of rapid urbanization processes in third world capital cities. Commonly in fast-growing cities, housing and job supply, educational and recreational opportunities, as well as public transportation infrastructure, are not accommodating rapid population growth, exposing people to high noise and emission polluted living environments with low-quality neighborhoods and a lack of recreational areas. Like many others, Egypt’s capital city Cairo, according to the UN facing annual population growth rates of up to 428.000 people, is struggling to address the general deterioration of urban living conditions. New settlements typologies and urban reconstruction approach hardly follow sustainable urbanization principles or socio-ecologic urbanization models with severe effects not only for inhabitants but also for the local environment and global climate. The authors prove that ‘Vertical Village’ buildings can offer a sustainable solution for increasing urban density with at the same time improving the living quality and urban environment significantly. Inserting them within high-density urban fabrics the ecologic and socio-cultural conditions of low-quality neighborhoods can be transformed towards districts, considering all needs of sustainable and social urban life. This study analyzes existing building typologies in Cairo’s «low quality - high density» districts Ard el Lewa, Dokki and Mohandesen according to benchmarks for sustainable residential buildings, identifying major problems and deficits. In 3 case study design projects, the sustainable transformation potential through ‘Vertical Village’ buildings are laid out and comparative studies show the improvement of the urban microclimate, safety, social diversity, sense of community, aesthetics, privacy, efficiency, healthiness and accessibility. The main result of the paper is that the disadvantages of density and overpopulation in developing countries can be converted with ‘Vertical Village’ buildings into advantages, achieving attractive and environmentally friendly living environments with multiple synergies. The paper is documenting based on scientific criteria that mixed-use vertical building structures, designed according to sustainable principles of low rise housing, can serve as an alternative to convert «low quality - high density» districts in megacities, opening a pathway for governments to achieve sustainable urban transformation goals. Neglected informal urban districts, home to millions of the poorer population groups, can be converted into healthier living and working environments.

Keywords: sustainable, architecture, urbanization, urban transformation, vertical village

Procedia PDF Downloads 116
3016 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan

Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon

Abstract:

In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.

Keywords: edible film, collagen, myofibril, carrageenan

Procedia PDF Downloads 427
3015 Sustainability of the Built Environment of Ranchi District

Authors: Vaidehi Raipat

Abstract:

A city is an expression of coexistence between its users and built environment. The way in which its spaces are animated signify the quality of this coexistence. Urban sustainability is the ability of a city to respond efficiently towards its people, culture, environment, visual image, history, visions and identity. The quality of built environment determines the quality of our lifestyles, but poor ability of the built environment to adapt and sustain itself through the changes leads to degradation of cities. Ranchi was created in November 2000, as the capital of the newly formed state Jharkhand, located on eastern side of India. Before this Ranchi was known as summer capital of Bihar and was a little larger than a town in terms of development. But since then it has been vigorously expanding in size, infrastructure as well as population. This sudden expansion has created a stress on existing built environment. The large forest covers, agricultural land, diverse culture and pleasant climatic conditions have degraded and decreased to a large extent. Narrow roads and old buildings are unable to bear the load of the changing requirements, fast improving technology and growing population. The built environment has hence been rendered unsustainable and unadaptable through fastidious changes of present era. Some of the common hazards that can be easily spotted in the built environment are half-finished built forms, pedestrians and vehicles moving on the same part of the road. Unpaved areas on street edges. Over-sized, bright and randomly placed hoardings. Negligible trees or green spaces. The old buildings have been poorly maintained and the new ones are being constructed over them. Roads are too narrow to cater to the increasing traffic, both pedestrian and vehicular. The streets have a large variety of activities taking place on them, but haphazardly. Trees are being cut down for road widening and new constructions. There is no space for greenery in the commercial as well as old residential areas. The old infrastructure is deteriorating because of poor maintenance and the economic limitations. Pseudo understanding of functionality as well as aesthetics drive the new infrastructure. It is hence necessary to evaluate the extent of sustainability of existing built environment of the city and create or regenerate the existing built environment into a more sustainable and adaptable one. For this purpose, research titled “Sustainability of the Built Environment of Ranchi District” has been carried out. In this research the condition of the built environment of Ranchi are explored so as to figure out the problems and shortcomings existing in the city and provide for design strategies that can make the existing built-environment sustainable. The built environment of Ranchi that include its outdoor spaces like streets, parks, other open areas, its built forms as well as its users, has been analyzed in terms of various urban design parameters. Based on which strategies have been suggested to make the city environmentally, socially, culturally and economically sustainable.

Keywords: adaptable, built-environment, sustainability, urban

Procedia PDF Downloads 233
3014 Stability Analysis of Slopes during Pile Driving

Authors: Yeganeh Attari, Gudmund Reidar Eiksund, Hans Peter Jostad

Abstract:

In Geotechnical practice, there is no standard method recognized by the industry to account for the reduction of safety factor of a slope as an effect of soil displacement and pore pressure build-up during pile installation. Pile driving disturbs causes large strains and generates excess pore pressures in a zone that can extend many diameters from the installed pile, resulting in a decrease of the shear strength of the surrounding soil. This phenomenon may cause slope failure. Moreover, dissipation of excess pore pressure set-up may cause weakening of areas outside the volume of soil remoulded during installation. Because of complex interactions between changes in mean stress and shearing, it is challenging to predict installation induced pore pressure response. Furthermore, it is a complex task to follow the rate and path of pore pressure dissipation in order to analyze slope stability. In cohesive soils it is necessary to implement soil models that account for strain softening in the analysis. In the literature, several cases of slope failure due to pile driving activities have been reported, for instance, a landslide in Gothenburg that resulted in a slope failure destroying more than thirty houses and Rigaud landslide in Quebec which resulted in loss of life. Up to now, several methods have been suggested to predict the effect of pile driving on total and effective stress, pore pressure changes and their effect on soil strength. However, this is still not well understood or agreed upon. In Norway, general approaches applied by geotechnical engineers for this problem are based on old empirical methods with little accurate theoretical background. While the limitations of such methods are discussed, this paper attempts to capture the reduction in the factor of safety of a slope during pile driving, using coupled Finite Element analysis and cavity expansion method. This is demonstrated by analyzing a case of slope failure due to pile driving in Norway.

Keywords: cavity expansion method, excess pore pressure, pile driving, slope failure

Procedia PDF Downloads 144
3013 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India

Authors: Prabhat Kashyap, Krishan Kumar

Abstract:

Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.

Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation

Procedia PDF Downloads 114
3012 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 147
3011 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 152
3010 Community Resilience in Response to the Population Growth in Al-Thahabiah Neighborhood

Authors: Layla Mujahed

Abstract:

Amman, the capital of Jordan, is the main political, economic, social and cultural center of Jordan and beyond. The city faces multitude demographic challenges related to the unstable political situation in the surrounded countries. It has regional and local migrants who left their homes to find better life in the capital. This resulted with random and unequaled population distribution. Some districts have high population and pressure on the infrastructure and services more than other districts.Government works to resolve this challenge in compliance with 100 Cities Resilience Framework (CRF). Amman participated in this framework as a member in December 2014 to work in achieving the four goals: health and welfare, infrastructure and utilities, economy and education as well as administration and government.  Previous research studies lack in studying Amman resilient work in neighborhood scale and the population growth as resilient challenge. For that, this study focuses on Al-Thahabiah neighborhood in Shafa Badran district in Amman. This paper studies the reasons and drivers behind this population growth during the selected period in this area then provide strategies to improve the resilient work in neighborhood scale. The methodology comprises of primary and secondary data. The primary data consist of interviews with chief officer in the executive part in Great Amman Municipality and resilient officer. The secondary data consist of papers, journals, newspaper, articles and book’s reading. The other part of data consists of maps and statistical data which describe the infrastructural and social situation in the neighborhood and district level during the studying period. Based upon those data, more detailed information will be found, e.g., the centralizing position of population and the provided infrastructure for them. This will help to provide these services and infrastructure to other neighborhoods and enhance population distribution. This study develops an analytical framework to assess urban demographical time series in accordance with the criteria of CRF to make accurate detailed projections on the requirements for the future development in the neighborhood scale and organize the human requirements for affordable quality housing, employment, transportation, health and education in this neighborhood to improve the social relations between its inhabitants and the community. This study highlights on the localization of resilient work in neighborhood scale and spread the resilient knowledge related to the shortage of its research in Jordan. Studying the resilient work from population growth challenge perspective helps improve the facilities provide to the inhabitants and improve their quality of life.

Keywords: city resilience framework, demography, population growth, stakeholders, urban resilience

Procedia PDF Downloads 174
3009 Shopping Tourism for Emerging Markets: Examining Shopping Tourism in the UK as an Attraction Tool for Wealthy Tourists

Authors: Ali Abdallah, Shaima Al Mohannadi

Abstract:

This study explores shopping tourism in the UK and examines it as an attraction tool for wealthy tourists to the UK’s capital city London. The study aims to identify the scope of shopping tourism used by countries such as the UK as a tool for attracting wealthy tourists. This study adopts the quantitative research approach through surveys in attaining the results required. Results demonstrate how the UK tourism market is an experience-based market and has recently become an attraction for luxurious brand shoppers. The term Trexit is introduced as a new form of tourism generated by the Brexit. If addressed appropriately the Trexit can assist in any negative economic retaliations of the Brexit. The study concludes that shopping tourism is yet to further incline in years to come, however, government support and cooperative planning with the retail industry is required as a means of further strengthening this developing sector.

Keywords: Brexit tourism, luxury shopping, UK tourism, wealthy tourists

Procedia PDF Downloads 156
3008 Gender Gap in Returns to Social Entrepreneurship

Authors: Saul Estrin, Ute Stephan, Suncica Vujic

Abstract:

Background and research question: Gender differences in pay are present at all organisational levels, including at the very top. One possible way for women to circumvent organizational norms and discrimination is to engage in entrepreneurship because, as CEOs of their own organizations, entrepreneurs largely determine their own pay. While commercial entrepreneurship plays an important role in job creation and economic growth, social entrepreneurship has come to prominence because of its promise of addressing societal challenges such as poverty, social exclusion, or environmental degradation through market-based rather than state-sponsored activities. This opens the research question whether social entrepreneurship might be a form of entrepreneurship in which the pay of men and women is the same, or at least more similar; that is to say there is little or no gender pay gap. If the gender gap in pay persists also at the top of social enterprises, what are the factors, which might explain these differences? Methodology: The Oaxaca-Blinder Decomposition (OBD) is the standard approach of decomposing the gender pay gap based on the linear regression model. The OBD divides the gender pay gap into the ‘explained’ part due to differences in labour market characteristics (education, work experience, tenure, etc.), and the ‘unexplained’ part due to differences in the returns to those characteristics. The latter part is often interpreted as ‘discrimination’. There are two issues with this approach. (i) In many countries there is a notable convergence in labour market characteristics across genders; hence the OBD method is no longer revealing, since the largest portion of the gap remains ‘unexplained’. (ii) Adding covariates to a base model sequentially either to test a particular coefficient’s ‘robustness’ or to account for the ‘effects’ on this coefficient of adding covariates might be problematic, due to sequence-sensitivity when added covariates are correlated. Gelbach’s decomposition (GD) addresses latter by using the omitted variables bias formula, which constructs a conditional decomposition thus accounting for sequence-sensitivity when added covariates are correlated. We use GD to decompose the differences in gaps of pay (annual and hourly salary), size of the organisation (revenues), effort (weekly hours of work), and sources of finances (fees and sales, grants and donations, microfinance and loans, and investors’ capital) between men and women leading social enterprises. Database: Our empirical work is made possible by our collection of a unique dataset using respondent driven sampling (RDS) methods to address the problem that there is as yet no information on the underlying population of social entrepreneurs. The countries that we focus on are the United Kingdom, Spain, Romania and Hungary. Findings and recommendations: We confirm the existence of a gender pay gap between men and women leading social enterprises. This gap can be explained by differences in the accumulation of human capital, psychological and social factors, as well as cross-country differences. The results of this study contribute to a more rounded perspective, highlighting that although social entrepreneurship may be a highly satisfying occupation, it also perpetuates gender pay inequalities.

Keywords: Gelbach’s decomposition, gender gap, returns to social entrepreneurship, values and preferences

Procedia PDF Downloads 239
3007 Split-Share Structure Reform and Statutory Audit Fees in China

Authors: Hsiao-Wen Wang

Abstract:

The split-share structure reform in China represents one of the most significant milestones in the evolution of the capital market. With the goal of converting non-tradable shares into tradable shares, the reform laid the foundation and supported the development of full-scale privatization. This study explores China’s split-share structure reform and its impact on statutory audit fees. This study finds that auditors earn a significant statutory audit fee premium after the split-share structure reform. The Big 4 auditors who provide better audit quality receive higher statutory audit fee premium than non-Big 4 auditors after the share reform, which is attributable to their brand reputation, rather than the relative market dominance.

Keywords: chinese split-share structure reform, statutory audit fees, big-4 auditors, corporate governance

Procedia PDF Downloads 390
3006 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 157
3005 Effects of Branched-Chain Amino Acid Supplementation on Sarcopenic Patients with Liver Cirrhosis

Authors: Deepak Nathiya1, Ramesh Roop Rai, Pratima Singh1, Preeti Raj1, Supriya Suman, Balvir Singh Tomar

Abstract:

Background: Sarcopenia is a catabolic state in liver cirrhosis (LC), accelerated with a breakdown of skeletal muscle to release amino acids which adversely affects survival, health-related quality of life, and response to any underlying disease. The primary objective of the study was to investigate the long-term effect of branched-chain amino acids (BCAA) supplementations on parameters associated with improved prognosis in sarcopenic patients with LC, as well as to evaluate its impact on cirrhotic-related events. Methods: We carried out a 24 week, single-center, randomized, open-label, controlled, two cohort parallel-group intervention trial comparing the efficacy of BCAA against lactoalbumin (L-ALB) on 106 sarcopenic liver cirrhotics. The BCAA (intervention) group was treated with 7.2 g BCAA per whereas, the lactoalbumin group was also given 6.3 g of L-Albumin. The primary outcome was to assess the impact of BCAA on parameters of sarcopenia: muscle mass, muscle strength, and physical performance. The secondary outcomes were to study combined survival and maintenance of liver function changes in laboratory and clinical markers in the duration of six months. Results: Treatment with BCAA leads to significant improvement in sarcopenic parameters: muscle strength, muscle function, and muscle mass. The total cirrhotic-related complications and cumulative event-free survival occurred fewer in the BCAA group than in the L-ALB group. Prognostic markers also improved significantly in the study. Conclusion: The current clinical trial demonstrated that long-term BCAAs supplementation improved sarcopenia and prognostic markers in patients with advanced liver cirrhosis.

Keywords: sarcopenia, liver cirrhosis, BCAA, quality of life

Procedia PDF Downloads 132
3004 Early Return to Play in Football Player after ACL Injury: A Case Report

Authors: Nicola Milani, Carla Bellissimo, Davide Pogliana, Davide Panzin, Luca Garlaschelli, Giulia Facchinetti, Claudia Casson, Luca Marazzina, Andrea Sartori, Simone Rivaroli, Jeff Konin

Abstract:

The patient is a 26 year-old male amateur football player from Milan, Italy; (81kg; 185cm; BMI 23.6 kg/m²). He sustained a non-contact anterior cruciate ligament tear to his right knee in June 2021. In September 2021, his right knee ligament was reconstructed using a semitendinosus graft. The injury occurred during a football match on natural grass with typical shoes on a warm day (32 degrees celsius). Playing as a defender he sustained the injury during a change of direction, where the foot was fixated on the grass. He felt pain and was unable to continue playing the match. The surgeon approved his rehabilitation to begin two weeks post-operative. The initial physiotherapist assessment determined performing two training sessions per day within the first three months. In the first three weeks, the pain was 4/10 on Numerical Rating Scale (NRS), no swelling, a range of motion was 0-110°, with difficulty fully extending his knee and minimal quadriceps activation. Crutches were discontinued at four weeks with improved walking. Active exercise, electrostimulator, physical therapy, massages, osteopathy, and passive motion were initiated. At week 6, he completed his first functional movement screen; the score was 16/21 with no pain and no swelling. At week 8, the isokinetic test showed a 23% differential deficit between the two legs in maximum strength (at 90°/s). At week 10, he improved to 15% of injury-induced deficit which suggested he was ready to start running. At week 12, the athlete sustained his first threshold test. At week 16, he performed his first return to sports movement assessment, which revealed a 10% stronger difference between the legs. At week 16, he had his second threshold test. At week 17, his first on-field test revealed a 5% differential deficit between the two legs in the hop test. At week 18, isokinetic test demonstrates that the uninjured leg was 7% stronger than the recovering leg in maximum strength (at 90°/s). At week 20, his second on-field test revealed a 2% difference in hop test; at week 21, his third isokinetic test demonstrated a difference of 5% in maximum strength (at 90°/s). At week 21, he performed his second return to sports movement assessment which revealed a 2% difference between the limbs. Since it was the end of the championship, the team asked him to partake in the playoffs; moreover the player was very motivated to participate in the playoffs also because he was the captain of the team. Together with the player and the team, we decided to let him play even though we were aware of a heightened risk of injury than what is reported in the literature because of two factors: biological recovery times and the results of the tests we performed. In the decision making process about the athlete’s recovery time, it is important to balance the information available from the literature with the desires of the patient to avoid frustration.

Keywords: ACL, football, rehabilitation, return to play

Procedia PDF Downloads 114
3003 Architectural and Structural Analysis of Selected Tall Buildings in Warsaw, Poland

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

This paper presents elements of architectural and structural analysis of selected high-rise buildings in the Polish capital city of Warsaw. When analyzing the architecture of Warsaw, it can be concluded that it is currently a rapidly growing city with technologically advanced skyscrapers that belong to the category of intelligent buildings. The constructional boom over the last dozen years has seen the erection of postmodern skyscrapers for office and residential use. This article focuses on how Warsaw has recently joined the most architecturally interesting cities in Europe. Warsaw is currently in fifth place in Europe in terms of the number of skyscrapers and is considered the second most preferred city in Europe (after London) for investment related to them. However, the architectural development of the city could not take place without the participation of eminent Polish and foreign architects such as Stefan Kuryłowicz, Lary Oltmans, Helmut Jahn or Daniel Libeskind.

Keywords: core structure, curtain facade, raft foundation, tall buildings

Procedia PDF Downloads 261
3002 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs

Procedia PDF Downloads 254
3001 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites

Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh

Abstract:

The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.

Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention

Procedia PDF Downloads 302
3000 Examining the Influence of Firm Internal Level Factors on Performance Variations among Micro and Small Enterprises: Evidence from Tanzanian Agri-Food Processing Firms

Authors: Pulkeria Pascoe, Hawa P. Tundui, Marcia Dutra de Barcellos, Hans de Steur, Xavier Gellynck

Abstract:

A majority of Micro and Small Enterprises (MSEs) experience low or no growth. Understanding their performance remains unfinished and disjointed as there is no consensus on the factors influencing it, especially in developing countries. Using a Resource-Based View (RBV) as the theoretical background, this cross-sectional study employed four regression models to examine the influence of firm-level factors (firm-specific characteristics, firm resources, manager socio-demographic characteristics, and selected management practices) on the overall performance variations among 442 Tanzanian micro and small agri-food processing firms. Study results confirmed the RBV argument that intangible resources make a larger contribution to overall performance variations among firms than that tangible resources. Firms' tangible and intangible resources explained 34.5% of overall performance variations (intangible resources explained the overall performance variability by 19.4% compared to tangible resources, which accounted for 15.1%), ranking first in explaining the overall performance variance. Firm-specific characteristics ranked second by influencing variations in overall performance by 29.0%. Selected management practices ranked third (6.3%), while the manager's socio-demographic factors were last on the list, as they influenced the overall performance variability among firms by only 5.1%. The study also found that firms that focus on proper utilization of tangible resources (financial and physical), set targets, and undertake better working capital management practices performed higher than their counterparts (low and average performers). Furthermore, accumulation and proper utilization of intangible resources (relational, organizational, and reputational), undertaking performance monitoring practices, age of the manager, and the choice of the firm location and activity were the dominant significant factors influencing the variations among average and high performers, relative to low performers. The entrepreneurial background was a significant factor influencing variations in average and low-performing firms, indicating that entrepreneurial skills are crucial to achieving average levels of performance. Firm age, size, legal status, source of start-up capital, gender, education level, and total business experience of the manager were not statistically significant variables influencing the overall performance variations among the agri-food processors under the study. The study has identified both significant and non-significant factors influencing performance variations among low, average, and high-performing micro and small agri-food processing firms in Tanzania. Therefore, results from this study will help managers, policymakers and researchers to identify areas where more attention should be placed in order to improve overall performance of MSEs in agri-food industry.

Keywords: firm-level factors, micro and small enterprises, performance, regression analysis, resource-based-view

Procedia PDF Downloads 80
2999 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 317