Search results for: water supply systems
16254 Assessment of Multi-Domain Energy Systems Modelling Methods
Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell
Abstract:
Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.Keywords: CHPV, thermal storage, control, dynamic simulation
Procedia PDF Downloads 24016253 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities
Authors: Idil Kanter Otcu
Abstract:
Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.Keywords: energy efficiency, landscape design, plant design, xeriscape landscape
Procedia PDF Downloads 26116252 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells
Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós
Abstract:
Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution
Procedia PDF Downloads 29116251 Molecular Detection of Staphylococcus aureus in the Pork Chain Supply and the Potential Anti-Staphylococcal Activity of Natural Compounds
Authors: Valeria Velasco, Ana M. Bonilla, José L. Vergara, Alcides Lofa, Jorge Campos, Pedro Rojas-García
Abstract:
Staphylococcus aureus is both commensal bacterium and opportunistic pathogen that can cause different diseases in humans and can rapidly develop antimicrobial resistance. Since this bacterium has the ability to colonize the nares and skin of humans and animals, there is a risk of contamination of food in different steps of the food chain supply. Emerging strains have been detected in food-producing animals and meat, such as methicillin-resistant S. aureus (MRSA). The aim of this study was to determine the prevalence and oxacillin susceptibility of S. aureus in the pork chain supply in Chile and to suggest some natural antimicrobials for control. A total of 487 samples were collected from pigs (n=332), carcasses (n=85), and retail pork meat (n=70). Presumptive S. aureus colonies were isolated by selective enrichment and culture media. The confirmation was carried out by biochemical testing (Api® Staph) and molecular technique PCR (detection of nuc and mecA genes, associated with S. aureus and methicillin resistance, respectively). The oxacillin (β-lactam antibiotic that replaced methicillin) susceptibility was assessed by minimum inhibitory concentration (MIC) using the Epsilometer test (Etest). A preliminary assay was carried out to test thymol, carvacrol, oregano essential oil (Origanum vulgare L.), Maqui or Chilean wineberry extract (Aristotelia chilensis (Mol.) Stuntz) as anti-staphylococcal agents using the disc diffusion method at different concentrations. The overall prevalence of S. aureus in the pork chain supply reached 33.9%. A higher prevalence of S. aureus was determined in carcasses (56.5%) than in pigs (28.3%) and pork meat (32.9%) (P ≤ 0.05). The prevalence of S. aureus in pigs sampled at farms (40.6%) was higher than in pigs sampled at slaughterhouses (23.3%) (P ≤ 0.05). The contamination of no packaged meat with S. aureus (43.1%) was higher than in packaged meat (5.3%) (P ≤ 0.05). The mecA gene was not detected in S. aureus strains isolated in this study. Two S. aureus strains exhibited oxacillin resistance (MIC ≥ 4µg/mL). Anti-staphylococcal activity was detected in solutions of thymol, carvacrol, and oregano essential oil at all concentrations tested. No anti-staphylococcal activity was detected in Maqui extract. Finally, S. aureus is present in the pork chain supply in Chile. Although the mecA gene was not detected, oxacillin resistance was found in S. aureus and could be attributed to another resistance mechanism. Thymol, carvacrol, and oregano essential oil could be used as anti-staphylococcal agents at low concentrations. Research project Fondecyt No. 11140379.Keywords: antimicrobials, mecA gen, nuc gen, oxacillin susceptibility, pork meat
Procedia PDF Downloads 22816250 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery
Authors: Peña A. Roland R., Lozano P. Jean P.
Abstract:
The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow
Procedia PDF Downloads 12416249 Identification and Isolation of E. Coli O₁₅₇:H₇ From Water and Wastewater of Shahrood and Neka Cities by PCR Technique
Authors: Aliasghar Golmohammadian, Sona Rostampour Yasouri
Abstract:
One of the most important intestinal pathogenic strains is E. coli O₁₅₇:H₇. This pathogenic bacterium is transmitted to humans through water and food. E. coli O₁₅₇:H₇ is the main cause of Hemorrhagic colitis (HC), Hemolytic Uremic Syndrome (HUS), Thrombotic Thrombocytopenic Purpura (TTP) and in some cases death. Since E. coli O₁₅₇:H₇ can be transmitted through the consumption of different foods, including vegetables, agricultural products, and fresh dairy products, this study aims to identify and isolate E. coli O₁₅₇:H₇ from wastewater by PCR technique. One hundred twenty samples of water and wastewater were collected by Falcom Sterile from Shahrood and Neka cities. The samples were checked for colony formation after appropriate centrifugation and cultivation in the specific medium of Sorbitol MacConkey Agar (SMAC) and other diagnostic media of E. coli O₁₅₇:H₇. Also, the plates were observed macroscopically and microscopically. Then, the necessary phenotypic tests were performed on the colonies, and finally, after DNA extraction, the PCR technique was performed with specific primers related to rfbE and stx2 genes. The number of 5 samples (6%) out of all the samples examined were determined positive by PCR technique with observing the bands related to the mentioned genes on the agarose gel electrophoresis. PCR is a fast and accurate method to identify the bacteria E. coli O₁₅₇:H₇. Considering that E. coli bacteria is a resistant bacteria and survives in water and food for weeks and months, the PCR technique can provide the possibility of quick detection of contaminated water. Moreover, it helps people in the community control and prevent the transfer of bacteria to healthy and underground water and agricultural and even dairy products.Keywords: E. coli O₁₅₇:H₇, PCR, water, wastewater
Procedia PDF Downloads 6516248 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels
Authors: Abdulrahman Abdulrahman
Abstract:
A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile
Procedia PDF Downloads 23716247 Acid Injection PTFE Internal Lining in Raw Water System
Authors: Fikri Suwaileh
Abstract:
In the reverse osmosis (RO) water treatment plant, operation was suffering from several leaks on the acid injection point spool and downstream spools, due to insufficient injection monitoring and the coating failure leading to pin holes. The paper will go over the background of the leaks in the acid injection point, the process in the RO plant, the material, and coating used in the existing spools, the impact of these repeated leaks, the type of damage mechanism that occurred in the system due to the manner of acid injection and the heat in the spools, which lead to coating failure, leaks and water release. This paper will also look at the analysis, both the short- and long-term recommendations, and the utilization of Teflon internal lining to stop the leaks. Sharing this case study will enhance the knowledge of the importance of taking all factors that will lead to leaks in the acid injection points, along with the importance of utilizing the appropriate coating material lining to enhance the full system.Keywords: corrosion, coating, raw water, lining
Procedia PDF Downloads 1916246 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach
Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez
Abstract:
The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling
Procedia PDF Downloads 3816245 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network
Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer
Abstract:
The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine
Procedia PDF Downloads 40716244 SME Credit Financing, Financial Development and Economic Growth: A VAR Approach to the Nigerian Economy
Authors: A. Bolaji Adesoye, Alimi Olorunfemi
Abstract:
This paper examines the impact of small and medium-scale enterprises (SMEs) credit financing and financial market development and their shocks on the output growth of Nigeria. The study estimated a VAR model for Nigeria using 1970-2013 annual data series. Unit root tests and cointegration are carried out. The study also explores IRFs and FEVDs in a system that includes output, commercial bank loan to SMEs, domestic credit to private sector by banks, money supply, lending rate and investment. Findings suggest that shocks in commercial bank credit to SMEs has a major impact on the output changes of Nigeria. Money supply shocks also have a sizeable impact on output growth variations amidst other financial instruments. Lastly, neutrality of investment does not hold in Nigeria as it also has impact on output fluctuations.Keywords: SMEs financing, financial development, investment, output, Nigeria
Procedia PDF Downloads 40816243 Preliminary Investigation into the Potentials of Mixed Blend of Acha (Digitaria exiles), Aya (Cyperus esculenta) and Defatted Water Melon Seed (Citrullis lanatus) Flour as a Weaning Formula
Authors: O. G. Onuoha, O. G. Akagu
Abstract:
The potentials of acha (Digitaria exiles), aya (Cyperus esculentus) and defatted water melon seed (Citrullis lanatus) as a weaning formula was investigated using the following blends for acha, aya and defatted water melon seed respectively in percentage proportion to obtain the weaning formulae; WS1(20:50:30); WS2(30:40:30); WS3(40:30:30); WS4(50:20:30). The result of the chemical analysis showed that; the sample WS1 had the highest value (15.6%) for protein while sample WS4 had the least value (14.1%). The fat content sample WS4 having the highest value (30.8%) while sample WS1 had the least value (27.3%). The ash content sample WS4 had the highest value (3.22%) while sample WS1 had the least value (2.63%). The carbohydrate content showed that sample WS1 having the highest value (50.5%) while sample WS4 had the least value (46.58%). While sample WS4 had the highest energy value (528.32 Kcal) and sample WS2 had the least value (515.06 Kcal). However, all the sample results fell within the dietary daily reference intake for infants between 0-3 years and required only local technology in its production.Keywords: weaning formula, acha, aya, deffted water melon seed
Procedia PDF Downloads 27316242 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation
Authors: Zhaoyang Liu
Abstract:
It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions
Procedia PDF Downloads 17316241 Modelling and Simulation of Bioethanol Production from Food Waste Using CHEMCAD Software
Authors: Kgomotso Matobole, Noluzuko Monakali, Hilary Rutto, Tumisang Seodigeng
Abstract:
On a global scale, there is an alarming generation of food waste. Food waste is generated across the food supply chain. Worldwide urbanization, as well as global economic growth, have contributed to this amount of food waste the environment is receiving. Food waste normally ends on illegal dumping sites when not properly disposed, or disposed to landfills. This results in environmental pollution due to inadequate waste management practices. Food waste is rich in organic matter and highly biodegradable; hence, it can be utilized for the production of bioethanol, a type of biofuel. In so doing, alternative energy will be created, and the volumes of food waste will be reduced in the process. This results in food waste being seen as a precious commodity in energy generation instead of a pollutant. The main aim of the project was to simulate a biorefinery, using a software called CHEMCAD 7.12. The resulting purity of the ethanol from the simulation was 98.9%, with the feed ratio of 1: 2 for food waste and water. This was achieved by integrating necessary unit operations and optimisation of their operating conditions.Keywords: fermentation, bioethanol, food waste, hydrolysis, simulation, modelling
Procedia PDF Downloads 37616240 Final Account Closing in Construction Project: The Use of Supply Chain Management to Reduce the Delays
Authors: Zarabizan Zakaria, Syuhaida Ismail, Aminah Md. Yusof
Abstract:
Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). This process is not easy to implement efficiently and effectively. The issue of delays in construction is a major problem for construction projects. These delays have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demands that are constantly changing and influencing, either directly or indirectly, the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the problem and issues in the final account closing in construction projects, and it establishes the need to embrace Supply Chain Management (SCM) and then elucidates the need and strategies for the development of a delay reduction framework. At the same time, this paper provides effective measures to avoid or at least reduce the delay to the optimum level. Allowing problems in the closure declaration to occur without proper monitoring and control can leave negative impact on the cost and time of delivery to the end user. Besides, it can also affect the reputation or image of the agency/department that manages the implementation of a contract and consequently may reduce customer's trust towards the agencies/departments. It is anticipated that the findings reported in this paper could address root delay contributors and apply SCM tools for their mitigation for the better development of construction project.Keywords: final account closing, construction project, construction delay, supply chain management
Procedia PDF Downloads 36716239 People's Perspective on Water Commons in Trans-Boundary Water Governance: A Case Study from Nepal
Authors: Sristi Silwal
Abstract:
South Asian rivers support ecosystems and sustain well-being of thousands of riparian communities. Rivers however are also sources of conflict between countries and one of the contested issues between governments of the region. Governments have signed treaties to harness some of the rivers but their provisions have not been successful in improving the quality of life of those who depend on water as common property resources. This paper will present a case of the study of the status of the water commons along the lower command areas of Koshi, Gandka and Mahakali rivers. Nepal and India have signed treaties for development and management of these rivers in 1928, 1954 and 1966. The study investigated perceptions of the local community on climate-induced disasters, provision of the treaties such as water for irrigation, participation in decision-making and specific impact of women. It looked at how the local community coped with adversities. The study showed that the common pool resources are gradually getting degraded, flood events increasing while community blame ‘other state’ and state administration for exacerbating these ills. The level of awareness about provisions of existing treatise is poor. Ongoing approach to trans-boundary water management has taken inadequate cognizance of these realities as the dominant narrative perpetuates cooperation between the governments. The paper argues that on-going discourses on trans-boundary water development and management need to use a new metrics of taking cognizance of the condition of the commons and that of the people depended on them for sustenance. In absence of such narratives, the scale of degradation would increase making those already marginalized more vulnerable to impacts of global climate change.Keywords: climate change vulnerability, conflict, cooperation, water commons
Procedia PDF Downloads 23616238 Study Technical Possibilities of Agricultural Reuse of by-Products from Treatment Plant of Boumerdes, Algeria
Authors: Kadir Mokrane, Souag Doudja
Abstract:
In Algeria, one of the Mediterranean countries, water resources are limited and unevenly distributed in space and in time. Boumerdes, coastal town of Algeria, known for its farming and fishing activities. The region is also known for its semi-arid climate and a large water deficit. In order to preserve the quality of water bodies and to reduce withdrawals in the natural environment, it is necessary to seek alternative supplies. The reuse of treated wastewater seems to be a good alternative, especially for irrigation. In the framework of sustainable development, it is imperative to rationalize the use of water resources conventional and unconventional. That is why the re-use agricultural of by-products of the treatment is an alternative expected to preserve the environment and promotion of the agricultural sector. The present work aims, to search for the possibility of reuse of treated wastewater, and sludge resulting from treatment plant of the city of Boumerdes in agriculture, through the analysis of physical, chemical and bacteriological on the samples, and the continuous monitoring of the evolution of several elements during the period of study extended over 12 months, and then, the comparison of these test results to standards and guidelines established in the framework of irrigation and land application.Keywords: treated water, sewage sludge, recycling, agriculture
Procedia PDF Downloads 24816237 Environmental Contamination of Water Bodies by Waste Produced by Slaughterhouses and the Prevalence of Waterborne Diseases in Kumba Municipality
Authors: Maturin Désiré Sop Sop, Didien Njumba Besende, Samuel Fosso Wamba
Abstract:
This study seeks to examine the nexus between drinking water sources in the Kumba municipality and its related health implications vis-à-vis the recurrent incidences of waterborne diseases such as Typhoid, Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The study adopted a purposive sampling technique in which surveys were conducted between the months of June to December 2022. 150 questionnaires were retrieved from the 210 administered to the affected population of Kosala, Buea Road and Mambanda. Information for the study was collected using surveys, questionnaires, key informant interviews, the laboratory analysis of collected drinking water samples, the researcher’s direct observation as well and hospital reports on the prevalence of waterborne diseases. Water samples from the nearby streams and wells, which were communally used by the local population for drinking, and five slaughterhouses within the affected areas were laboratory tested to determine alterations in their chemical, physical and microbiological characteristics. The collected water samples from all the streams and wells used for drinking were tested for changes in properties such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. These results were then compared with the WHO regulations for water quality. The results from the laboratory analysis of drinking water sources, which were at the same time used by the surrounding abattoirs revealed significant alterations in the water quality parameters such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. This is due to the channeling of untreated wastes into the different drinking water points as well as the inter-use of dirty utensils such as buckets from slaughterhouses to fetch water from the streams and wells that serve as drinking water sources for the local population. On the human health aspect, the results were later compared with hospital data, and they revealed that the consumption of such contaminated water in the localities of Kosala, Mambanda, and Buea road negatively affected the local population because of the high incidences of Typhoid Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The poor management of drinking water sources pollutes streams and significantly exposes the local population to lots of waterborne diseases. Efforts should be made to provide clean pipe-borne water to the affected localities of Kumba as well as to ensure the proper management of wastes.Keywords: drinking water, diseases, Kumba, municipality
Procedia PDF Downloads 7716236 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait
Authors: A. Al-Rashidi, A. El-Hamalawi
Abstract:
In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.Keywords: single-axis and dual-axis photovoltaic systems, capacity factor, final yield, Kuwait
Procedia PDF Downloads 29616235 Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems
Authors: Han Gul Lee
Abstract:
When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001).Keywords: risk assessment, disaster management, water treatment utilities, situational awareness, drone technologies
Procedia PDF Downloads 14416234 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water
Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh
Abstract:
Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.Keywords: graphite to graphene, oleophilic, produced water, separation
Procedia PDF Downloads 12216233 Compromising of Vacuum Sewerage System in Developing Regions and the Impact on Environmet
Authors: Abdelsalam Elawwad, Mostafa Ragab, Hisham Abdel-Halim
Abstract:
Leakage in sewerage system can cause groundwater and soil contamination in urban areas, especially in area with a high groundwater table. This is a serious problem in small villages in developing countries that rely on ground water as a source for irrigation and drinking purposes. In the developed countries, the recent trend in areas with low population densities is vacuum sewerage system, which is environmentally safer than conventional gravity system, protecting public health, preventing exfiltration to the ground water, very easily applied in a relatively short time and can cope with a faster expansion of the urbanized areas. The aim of this work is to assess the feasibility of using vacuum sewerage in developing country, such as Egypt. Knowledge of local conditions can determine the most suitable sewer system for a specific region. Technical, environmental and financial comparisons between conventional sewerage system and vacuum sewerage system were held using statistical analysis. Different conditions, such as population densities, geometry of area, and ground water depths were evaluated. Sample comprising of 30 Egyptian villages was selected, where a complete design for conventional sewerage system and vacuum sewerage system was done. Based on this study, it is recommended from the environmental point of view to construct the vacuum sewerage system in such villages with low population densities; however, it is not economic for all cases. From financial point of view, vacuum sewerage system was a good competitor to conventional systems in flat areas and areas with high groundwater table. The local market supplying of the construction equipment especially collection chambers will greatly affect the investment cost. Capacity building and social mobilization will also play a great role in sustainability of this system. At the end, it is noteworthy that environmental sustainability and public health are more important than the financial aspects.Keywords: ground water, conventional system, vacuum system, statistics, cost, density, terrain
Procedia PDF Downloads 27516232 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 17816231 Rapides-Des-Îles Main Spillway - Rehabilitation
Authors: Maryam Kamali Nezhad
Abstract:
As part of the project to rehabilitate the main spillway ("main") of the Rapides-des-Îles development in 2019, it was noted that there is a difference between the water level of the intake gauge and the level measured at the main spillway. The Rapides-des-Îles Generating Station is a Hydro-Québec hydroelectric generating station and dam located on the Ottawa River in the Abitibi-Témiscamingue administrative region of Québec. This plant, with an installed capacity of 176 MW, was commissioned in 1966. During the start-up meeting held at the site in May 2019, it was noticed that the water level upstream of the main spillway was considerably higher than the water level at the powerhouse intake. Measurements showed that the level was 229.46 m, whereas the normal operating level (NOL) and the critical maximum level (CML) used in the design were 228.60 m and 229.51 m, respectively. Considering that the water level had almost reached the maximum critical level of the structure despite a flood with a recurrence period of about 100 years, the work was suspended while the project was being decided. This is the first time since the Rapides des îles project was commissioned that a significant difference in elevation between the water level at the powerhouse (intake) and the main spillway has been observed. Following this observation, the contractor's work was suspended. The objective of this study is to identify the reason(s) for this problem and find solutions. Then determine the new upstream levels at the main spillway at which the safety of the structure is ensured and then adjust the engineering of the main spillway in the rehabilitation project accordingly.Keywords: spillway, rehabilitation, water level, powerhouse, normal operating level, critical maximum level, safety of the structure
Procedia PDF Downloads 7316230 The Determination of Total Microbial Count and Prevalence of Salmonella in the Shrimp Supply in Khuzestan Province
Authors: Sana Mohammad Jafar
Abstract:
Salmonella is one of the major causes of foodborne diseases throughout the world. Shrimp are an important commodity in world fishery trade. The microbiological quality of shrimp must be evaluated for assurance of shrimp. The aim of this study was to evaluate the microbiological quality and to determine the prevalence of Salmonella in shrimp sold in Khuzestan province. In this study, a total of 245 samples of shrimp sold in Khuzestan province were tested for Salmonella prevalence and total microbial population. The mean aerobic bacterial count in 50.2% of samples was 2200, in 29.8% of samples was 13,600, in 20% of samples was 36,700, and the mean aerobic bacterial count in the total samples was 20,000. (20,000 cfu/cc). Of the total samples, 33 samples were positive for Salmonella and the prevalence of Salmonella was determined 13.4%. These results indicate the possibility that shrimp contribute to foodborne infections. The improvement of shrimp quality is an important issue, and shrimp before consuming should be washed with water containing chlorine, with the aim of increasing safety. In addition, it should be avoided to eat shrimp as raw or not cooked properly.Keywords: determination, total microbial, Salmonella, shrimp
Procedia PDF Downloads 24016229 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach
Authors: Ching-Feng Chen
Abstract:
The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio
Procedia PDF Downloads 7516228 Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt
Authors: Sherif A. Abu El-Magd, Ahmed M. Sefelnasr, Ahmed M. Masoud
Abstract:
Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise.Keywords: numerical modeling, archeological site, groundwater recharge, egypt
Procedia PDF Downloads 12316227 An Algorithm to Compute the State Estimation of a Bilinear Dynamical Systems
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, we introduce a mathematical algorithm which is used for estimating the states in the bilinear systems. This algorithm uses a special linearization of the second-order term by using the best available information about the state of the system. This technique makes our algorithm generalizes the well-known Kalman estimators. The system which is used here is of the bilinear class, the evolution of this model is linear-bilinear in the state of the system. Our algorithm can be used with linear and bilinear systems. We also here introduced a real application for the new algorithm to prove the feasibility and the efficiency for it.Keywords: estimation algorithm, bilinear systems, Kakman filter, second order linearization
Procedia PDF Downloads 48616226 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection
Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol
Abstract:
The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress
Procedia PDF Downloads 22516225 Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai
Authors: E. Khattab, S. Halla
Abstract:
Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield.Keywords: interval irrigation, growth and yield characters, oil, jojoba, Sinai
Procedia PDF Downloads 194