Search results for: triangular lattice index-guiding photonic crystal fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2357

Search results for: triangular lattice index-guiding photonic crystal fiber

227 Utilizing Bario Rice, a Natural Red-Pigmented Rice from Sarawak, Malaysia, in the Development of Gluten-Free Bread

Authors: Macdalyna Esther Ronie, Hasmadi Mamat, Ahmad Hazim Abdul Aziz, Mohamad Khairi Zainol

Abstract:

Current trends in gluten-free food development are increasingly leaning towards the utilization of pigmented rice flour, with a particular focus on Bario Merah Sederhana (BMS), a red-pigmented rice native to Sarawak, Malaysia. This study delves into the evaluation of the nutritional, textural, and sensory attributes of gluten-free rice bread produced from a blend of BMS rice flour and potato starch. The resulting samples are denoted as F1 (100% BMS rice flour), F2 (90% BMS rice flour and 10% potato starch), F3 (80% BMS rice flour and 20% potato starch), and F4 (70% BMS rice flour and 30% potato starch). Comparatively, these gluten-free rice bread formulations exhibit higher levels of ash and crude fiber, along with lower carbohydrate content when juxtaposed with conventional wheat bread. Notably, the crude protein content of the rice bread diminishes significantly (p<0.05) as the proportion of rice flour decreases, primarily due to the higher protein content found in wheat flour. The crumb of the rice bread appears darker owing to the red pigment in the rice flour, while the crust is lighter than that of the control sample, possibly attributable to a reduced Maillard reaction. Among the various rice bread formulations, F4 stands out with the least dough and bread hardness, accompanied by the highest levels of stickiness and springiness in both dough and bread, respectively. In sensory evaluations, wheat bread garners the highest rating (p<0.05). However, within the realm of rice breads, F4 emerges as a viable and acceptable formulation, as indicated by its commendable scores in color (7.03), flavor (5.73), texture (6.03), and overall acceptability (6.18). These findings underscore the potential of BMS in the creation of gluten-free rice breads, with the formulation consisting of 70% rice flour and 30% potato starch emerging as a well-received and suitable option.

Keywords: gluten-free bread, bario rice, proximate composition, sensory evaluation

Procedia PDF Downloads 204
226 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 108
225 Rural Community Knowledge, Attitude and Perceptions of Consuming Dried Vegetables in Central Region of Tanzania

Authors: Radegunda Kessy, Justus Ochieng, Victor Afari-Sefa, Takemore Chagomoka, Ngoni Nenguwo

Abstract:

Vegetables are excellent sources of dietary fiber, vitamins, and minerals which constitute an indispensable constituent of diets, but in Tanzania and other Sub-Saharan African countries, they are not readily available all year round due to seasonal variations in the production cycle. Drying of vegetables is one of the traditional methods for food preservation known to man. The Dodoma and Singida regions of Tanzania are characterized by semi-arid agro-climate, thereby experiencing short seasonal supply of fresh vegetables followed by long drought in which dried vegetables become an alternative to meet high household demands. A primary survey of 244 of rural consumers was carried out to understand how knowledge, attitudes, and perceptions of rural consumers affect consumption of dried vegetables. The sample respondents were all found to be aware of open sun drying of vegetables while less than 50% of them were aware of solar-dried vegetables. Consumers were highly concerned with the hygiene, nutritional values, taste, drying method, freshness, color of dried vegetables, timely availability and easiness of cooking as important factors they consider before they purchase dried vegetables. Logit model results show that gender, income, years of consuming dried vegetables, awareness of the importance of solar dried vegetables vis-à-vis sun-dried alternatives and employment status influenced rural consumer’s decision to purchase dried vegetables. Preference on dried vegetables differs across the regions which are also important considerations for any future planned interventions. The findings imply that development partners and policymakers need to design better social marketing and promotion techniques for the enhanced adoption of solar drying technology, which will greatly improve the quality and utilization of dried vegetables by target households.

Keywords: dried vegetables, postharvest management, sun drying, solar drying

Procedia PDF Downloads 164
224 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 190
223 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films

Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu

Abstract:

Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.

Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain

Procedia PDF Downloads 131
222 Effects of Malachite Green Contaminated Water on Production of Pak Choy and Chinese Convolvulus

Authors: N. Piwpuan, J. Tosalee, N. Phonkerd

Abstract:

Malachite green (MG), a synthetic dye, is used in industries and aquaculture and also disposed in the effluent. Use of wastewater in irrigation increases due to water shortage. However, wastewater containing dyes, MG, are toxic to biological systems. Therefore, effects of MG on growth of vegetables were evaluated in order to utilize dye-contaminated wastewater for irrigation. In this study, Pak choy (Brassica chinensis) and Chinese convolvulus (Ipomoea aquatica) were grown in growing material (mixture of soil, coconut fiber, and compost) for four weeks and afterward kept watering with 200 ml of tap water containing MG at the concentrations of 0 (control), 1, 2, 10, and 20 mg/L. At harvest, number of leaf and shoot and root dry weight of the treated plants were measured and compared with control. For both species, their biomass values were similar among treatments and did not differ from the control plants (dry weight were 0.6-1.0 and 1.1-1.7 g/plant for B. chinensis and I. aquatica, respectively). B. chinensis treated with 2, 10, and 20 mg/L of MG produced lower number of new leaf and had smaller and shorter leaf compared to control and treatment of 1 mg/L. These results indicate the different responses between plant species, which B. chinensis is more sensitive to contaminant compared to I. aquatica. There was no sign of MG and leucomalachite green (LMG) detected in root and shoot tissues of plants treated with MG at 20 mg/L, tested by thin layer chromatography. After plant harvest, toxicity of the growing material from all treatments was tested on mung beans. Percent germination (83-97%), seedling fresh weight (0.3-0.5 g/plant), and shoot length (11-12.5 cm) were similar to the control. These indicated that contaminant in growing material did not pose detrimental effect on mung beans. Based on these results, the water contaminated with low concentration of MG, such as discharge from aquaculture, may serve as ferti-irrigation water to compensate water shortage.

Keywords: ferti-irrigation, soil toxicity, triphenylmethane dye, wastewater reuse

Procedia PDF Downloads 179
221 Performance Evaluation of Composite Beam under Uniform Corrosion

Authors: Ririt Aprilin Sumarsono

Abstract:

Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.

Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion

Procedia PDF Downloads 261
220 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 168
219 Designing of Oat Drink with Phytonutrients Assigned for Pro-Health Oriented Consumers

Authors: Gramza-Michalowska Anna, Skrety Joanna, Anna Zywica, Kobus-Cisowska Joanna, Kmiecik Dominik, Korczak Jozef

Abstract:

Background: Modern consumer highly appreciates the positive influence of consumed products on well-being and overall health. High acceptance of new food is a result of intensified research showing many proofs confirming that food offers significant prophylactic and therapeutic potential, next to its basic nutritional function. Objective: Proposition of the technology of unsweetened oat drinks enriched with plant extracts for pro-health oriented individuals. We investigated the effects of selected plant extracts addition on antioxidative capacity and consumer’s acceptance of drinks as representative of all day diet product. Methods: The analysis of the basic composition and antioxidant properties of the drinking product was conducted. Basic composition included protein, lipids and fiber content. Antioxidant capacity of drink was evaluated with use radical scavenging methods (DPPH, ABTS), ORAC value and FRAP. Proposed drink as new product was also characterized with sensory analysis, which included color, aroma, taste, consistency and overall acceptance. Results: Results showed that addition of plant extracts into a oat drink allowed to enhance its antioxidant potential and influenced significantly its sensory values. The preferred composition and properties of designed beverage permit claim that it can have a positive impact on the health of the consumers. Conclusion: Designed oat drink would be an answer for pro-healthy life style of the consumers. Results showed that product with plant extracts addition would be accepted by the consumers and because of its antioxidative potential could be an important factor in prevention of free radicals influence on human organism.

Keywords: phytonutrients, pro-health, well-being, antioxidant potential, sensory value

Procedia PDF Downloads 316
218 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 191
217 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 166
216 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 130
215 Public and Private Involvement in Agricultural Extension Services: Factors of Farmers’ Preference in Southwestern Nigeria

Authors: S. O. Ayansina, O. A. Adekunle

Abstract:

There is an increasing demand for a functional extension delivery services in Nigeria with a view to meet up with the food and fiber needs of the ever growing population of human and animal respectively. The study was therefore designed to examine the farmers’ preference for public and private extension services in Southwestern Nigeria, specifically to determine the farmers’ level of participation in the two types of organizations involved and also to evaluate the Performance level of personnel in the two organizations in order to ascertain the beneficiaries’ satisfaction. A multi-stage random sampling technique was used to samples 30 respondents from each of the three selected organizations in each of the three states sampled in Southwestern Nigeria. Hence, 270 respondents were sampled for the study. Data collected were analyzed with Kruskal Wallis one-way Analysis of variance to test the difference between the participation of beneficiaries in the public and private extension services and the level of benefit accrued from the two organizations involved in the study. Results generally revealed that private organizations were performing better and were more preferred by the beneficiaries. Results of the tested hypotheses as shown by Kruskal Wallis test of difference (x2=0.709) indicates no significant difference between farmers’ participation in the extension services of public and private organizations but however shows significant difference (X2=12.074) in the benefits achieved by respondents in the two organizations, such benefits include: increased quantity of Crop produced, farm income, skill acquisition, and improved Education in private extension organizations. Based on this result, it could be inferred that beneficiaries generally preferred private extension organizations because of their effectiveness and vibrancy in programme administration. Public extension is therefore recommended for general overhauling and possibly “merging” of public and private sectors in order to cater for teeming population of farmers demanding for efficient and functional extension services to better their lots both in production and processing.

Keywords: public and private involvement, extension services, farmers’ preferences, Kruskal Wallis Test

Procedia PDF Downloads 307
214 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 72
213 The Effect of Addition of White Mulberry Fruits on the Antioxidant Activity of the New Developed Bioactive Bread

Authors: Kobus-Cisowska Joanna, Flaczyk Ewa, Gramza-Michalowska Anna, Kmiecik Dominik, Przeor Monika, Marcinkowska Agata, Korczak Józef

Abstract:

Cereal products, including mainly bread is a staple food known from the beginning of history throughout the world. It is now believed that there is no replacement of the basic food. Bread, due to the high content of starch is the energy source for the proper functioning of our body. It also contains proteins, fats, vitamins, especially of the B group and vitamin E, a number of minerals, and fiber. The aim of the study was to evaluate the antioxidant activity of new developed bread premixes with mulberry fruits for people with anemia, diabetes, obesity and cardiovascular disease. From the finished product-bread, aqueous and methanol extracts was prepared, which in next step were analyzed to assess the activity of the radical DPPH test, ABTS, chelating activity, the ability to reduce metals. Extracts were prepared from bread were acquired with premixes directly after production and stored for three months. The resulting trial breads effect by different mechanisms of antioxidant. They showed the ability to scavenge radicals ABTS and DPPH and chelating activity. Methanol extracts showed significantly greater antioxidant activity in comparison with aqueous extracts, and the largest effect was estimated for sample of bread for anemia, diabetes and cardiovascular disease. The greatest ability to scavenging ABTS radicals showed breads for anemia, diabetes and cardiovascular disease, while smaller for anemia and control sample. It was shown that the methanol extracts of the breads samples showed no ability to chelate iron (II). These properties are observed only in the aqueous extracts. The greatest ability attempt had anemia while the lowest control sample. Financial supported by the UE Project no POIG 01.01.02-00-061/09.

Keywords: morus alba, antioxidant activity, free radicals, polyphenols

Procedia PDF Downloads 288
212 Dietary Diversity and Nutritional Status of Adolescents Attending Public Secondary Schools in Oyo State Nigeria

Authors: Nimot Opeyemi Wahab

Abstract:

Poor nutritional status during adolescence is a reflection of inadequate intake of nutrients. This can also be associated with a lack of consumption of diverse food. This study assessed the nutritional status and dietary diversity score (DDS) of in-school adolescents in Ibadan North, North East, and Ibadan South West Local Government Areas (LGA) of Oyo State, Nigeria. A cross-sectional study involving 3,510 in-school adolescents from the three LGA was conducted. Nutrient intake was measured using a validated 24-hour dietary recall, and the anthropometric measurement was also taken. Dietary diversity score (DDS) was assessed using the Individual Dietary Diversity Score (WDDS) of nine food groups. Participants were between 10-19years, and the mean age was 14.76±1.68, 15.32±1.77, and 15.45±1.62 in Ibadan North, Ibadan North East, and Ibadan South West, respectively. About 48% of the participants were male (47.9%), while 52.1% were female. BMI-for-age showed that 92.1%, 5.4%, 2.1%, and 0.4% of the participants were normal, underweight, overweight, and obese, respectively. The mean energy intake (143.193±695.98) of the female respondents was more than that of the male respondents (1406.86±767.41). The macronutrients intake (protein, carbohydrates, fiber, and fats) of the female participants was also found to be more than that of the male participants, with a non-significant difference of 0.336, 0.530, 0.234, and 0.069 (at p< 0.05). Out of all the vitamin intake, only vitamin C was found to be statistically different (p=0.038) at p<0.05 between the male and female respondents. Of all the mineral intake, only phosphorus showed a higher intake (575.20±362.12) among female respondents than the male respondents. The mean DDS of all participants was 4.59±0.939. The majority of the participants, 1183 (80.9%), were within the medium DDS category, 9.9% were low, while 1.5% were in the high category: of which males were 474 (71.5%) and females were 709 (88.6%). Participants from Ibadan North were 941(88.5%), and those from South West were 242(60.5%). A non-significant difference in the mean score of participants from the two locations (p=0.467) was also found. A negative correlation exists between DDS and BMI-for age (-0.11), DDS, and energy intake (-0.46) in Ibadan North and South West LGA. The nutritional status of in-school adolescents was normal, and DDS was within the medium category. Nutrition intervention regarding the consumption of diverse food is necessary among adolescents.

Keywords: nutritional status, dietary diversity, adolescents, nutrient intake

Procedia PDF Downloads 47
211 Analysis of Ancient and Present Lightning Protection Systems of Large Heritage Stupas in Sri Lanka

Authors: J.R.S.S. Kumara, M.A.R.M. Fernando, S.Venkatesh, D.K. Jayaratne

Abstract:

Protection of heritage monuments against lightning has become extremely important as far as their historical values are concerned. When such structures are large and tall, the risk of lightning initiated from both cloud and ground can be high. This paper presents a lightning risk analysis of three giant stupas in Anuradhapura era (fourth century BC onwards) in Sri Lanka. The three stupas are Jethawaaramaya (269-296 AD), Abayagiriya (88-76 BC) and Ruwanweliseya (161-137 BC), the third, fifth and seventh largest ancient structures in the world. These stupas are solid brick structures consisting of a base, a near hemispherical dome and a conical spire on the top. The ancient stupas constructed with a dielectric crystal on the top and connected to the ground through a conducting material, was considered as the hypothesis for their original lightning protection technique. However, at present, all three stupas are protected with Franklin rod type air termination systems located on top of the spire. First, a risk analysis was carried out according to IEC 62305 by considering the isokeraunic level of the area and the height of the stupas. Then the standard protective angle method and rolling sphere method were used to locate the possible touching points on the surface of the stupas. The study was extended to estimate the critical current which could strike on the unprotected areas of the stupas. The equations proposed by (Uman 2001) and (Cooray2007) were used to find the striking distances. A modified version of rolling sphere method was also applied to see the effects of upward leaders. All these studies were carried out for two scenarios: with original (i.e. ancient) lightning protection system and with present (i.e. new) air termination system. The field distribution on the surface of the stupa in the presence of a downward leader was obtained using finite element based commercial software COMSOL Multiphysics for further investigations of lightning risks. The obtained results were analyzed and compared each other to evaluate the performance of ancient and new lightning protection methods and identify suitable methods to design lightning protection systems for stupas. According to IEC standards, all three stupas with new and ancient lightning protection system has Level IV protection as per protection angle method. However according to rolling sphere method applied with Uman’s equation protection level is III. The same method applied with Cooray’s equation always shows a high risk with respect to Uman’s equation. It was found that there is a risk of lightning strikes on the dome and square chamber of the stupa, and the corresponding critical current values were different with respect to the equations used in the rolling sphere method and modified rolling sphere method.

Keywords: Stupa, heritage, lightning protection, rolling sphere method, protection level

Procedia PDF Downloads 216
210 Re-Entrant Direct Hexagonal Phases in a Lyotropic System Induced by Ionic Liquids

Authors: Saheli Mitra, Ramesh Karri, Praveen K. Mylapalli, Arka. B. Dey, Gourav Bhattacharya, Gouriprasanna Roy, Syed M. Kamil, Surajit Dhara, Sunil K. Sinha, Sajal K. Ghosh

Abstract:

The most well-known structures of lyotropic liquid crystalline systems are the two dimensional hexagonal phase of cylindrical micelles with a positive interfacial curvature and the lamellar phase of flat bilayers with zero interfacial curvature. In aqueous solution of surfactants, the concentration dependent phase transitions have been investigated extensively. However, instead of changing the surfactant concentrations, the local curvature of an aggregate can be altered by tuning the electrostatic interactions among the constituent molecules. Intermediate phases with non-uniform interfacial curvature are still unexplored steps to understand the route of phase transition from hexagonal to lamellar. Understanding such structural evolution in lyotropic liquid crystalline systems is important as it decides the complex rheological behavior of the system, which is one of the main interests of the soft matter industry. Sodium dodecyl sulfate (SDS) is an anionic surfactant and can be considered as a unique system to tune the electrostatics by cationic additives. In present study, imidazolium-based ionic liquids (ILs) with different number of carbon atoms in their single hydrocarbon chain were used as the additive in the aqueous solution of SDS. At a fixed concentration of total non-aqueous components (SDS and IL), the molar ratio of these components was changed, which effectively altered the electrostatic interactions between the SDS molecules. As a result, the local curvature is observed to modify, and correspondingly, the structure of the hexagonal liquid crystalline phases are transformed into other phases. Polarizing optical microscopy of SDS and imidazole-based-IL systems have exhibited different textures of the liquid crystalline phases as a function of increasing concentration of the ILs. The small angle synchrotron x-ray diffraction (SAXD) study has indicated the hexagonal phase of direct cylindrical micelles to transform to a rectangular phase at the presence of short (two hydrocarbons) chain IL. However, the hexagonal phase is transformed to a lamellar phase at the presence of long (ten hydrocarbons) chain IL. Interestingly, at the presence of a medium (four hydrocarbons) chain IL, the hexagonal phase is transformed to another hexagonal phase of direct cylindrical micelles through the lamellar phase. To the best of our knowledge, such a phase sequence has not been reported earlier. Even though the small angle x-ray diffraction study has revealed the lattice parameters of these phases to be similar to each other, their rheological behavior has been distinctly different. These rheological studies have shed lights on how these phases differ in their viscoelastic behavior. Finally, the packing parameters, calculated for these phases based on the geometry of the aggregates, have explained the formation of the self-assembled aggregates.

Keywords: lyotropic liquid crystals, polarizing optical microscopy, rheology, surfactants, small angle x-ray diffraction

Procedia PDF Downloads 118
209 The Antagonistic/Synergistic Effect of Probiotic Yeast Saccharomyces boulardii on Candida glabrata Adhesion

Authors: Zorica Tomičić, Ružica Tomičić, Peter Raspor

Abstract:

Growing resistance of pathogenic yeast Candida glabrata to many classes of antifungal drugs has stimulated efforts to discover new agents to combat a rising number of invasive C. glabrata infections, which deserves a great deal of concern due to the high mortality rate in immunocompromised populations. One promising strategy is the use of probiotic microorganisms, which, when administered in adequate amounts, confers a health benefit. A selected number of probiotic organisms, Saccharomyces boulardii among them, have been tested as potential biotherapeutic agents. The aim of this study was to investigate the effect of the probiotic yeast S. boulardii on the adhesion of clinical isolates of C. glabrata at different temperatures, pH values, and in the presence of three clinically important antifungal drugs, such as fluconazole, itraconazole and amphotericin B. The method used to assess adhesion was crystal violet staining. The selection of antimycotics concentrations used in the adhesion assay was based on minimum inhibitory concentrations (MICs) obtained by the preliminarily performed microdilution modification of the Reference method for broth dilution antifungal susceptibility testing of yeast (Clinical and Laboratory Standards Institute (CLSI), standard M27-A2). the results showed that despite the nonadhesiveness of S. boulardii cells, probiotic yeast significantly suppressed the adhesion of C. glabrata strains. Besides, at specific strain ratios, a slight stimulatory effect was observed in some C. glabrata strains, which highlights the importance of strain specificity and opens up further research interests. When environmental conditions are considered, temperature and pH significantly influenced co-culture adhesion of C. glabrata and S. boulardii. The adhesion of C. glabrata strains was relatively equally reduced over all tested temperature range (28°C, 37°C, 39°C and 42°C) in the presence of S. boulardii cells, while the adhesion of a few C. glabrata strains were significantly stimulated at 28°C and suppressed at 42°C. Further, the adhesion was highly dependent on pH, with the highest adherence at pH 4 and lowest at pH 8.5. It was observed that S. boulardii did not manage to suppress the adhesion of C. glabrata strains at high pH. Antimycotics on the other hand showed a greater impact, since S. boulardii failed to affect co-culture adhesion at higher antimycotics concentrations. As expected, exposure to various concentrations of amphotericin B significantly reduced the adherence ability of C.glabrata strains both in a single culture and co-culture with S. boulardii. Therefore, it can be speculated that S. boulardii could substitute the effect of antimycotics in a range concentrations and with specific type of strains. This would certainly change the view on the treatment of yeast infections in the future.

Keywords: adhesion, antimycotics, candida glabrata, saccharomyces boulardii

Procedia PDF Downloads 42
208 The Changes of Chemical Composition of Rice Straw Treated by a Biodecomposer Developed from Rumen Bacterial of Buffalo

Authors: A. Natsir, M. Nadir, S. Syahrir, A. Mujnisa

Abstract:

In tropical countries such as in Indonesia, rice straw plays an important role in fulfilling the needs of feed for ruminant, especially during the dry season in which the availability of forage is very limited. However, the main problem of using rice straw as a feedstuff is low digestibility due to the existence of the links between lignin and cellulose or hemicellulose, and imbalance of its minerals content. One alternative to solve this problem is by application of biodecomposer (BS) derived from rumen bacterial of the ruminant. This study was designed to assess the effects of BS application on the changes of the chemical composition of rice straw. Four adults local buffalo raised under typical feeding conditions were used as a source of inoculum for BS development. The animal was fed for a month with a diet consisted of rice straw and elephant grass before taking rumen fluid samples. Samples of rumen fluid were inoculated in the carboxymethyl cellulose (CMC) media under anaerobic condition for 48 hours at 37°C. The mixture of CMC media and microbes are ready to be used as a biodecomposer following incubation of the mixture under anaerobic condition for 7 days at 45°C. The effectiveness of BS then assessed by applying the BS on the straw according to completely randomized design consisted of four treatments and three replication. One hundred g of ground coarse rice straw was used as the substrate. The BS was applied to the rice straw substrate with the following composition: Rice straw without BS (P0), rice straw + 5% BS (P1), rice straw +10% BS (P2), and rice straw + 15% BS. The mixture of rice straw and BS then fermented under anaerobic for four weeks. Following the fermentation, the chemical composition of rice straw was evaluated. The results indicated that the crude protein content of rice straw significantly increased (P < 0.05) as the level of BS increased. On the other hand, the concentration of crude fiber of the rice straw was significantly decreased (P < 0.05) as the level of BS increased. Other nutrients such as minerals did not change (P > 0.05) due to the treatments. In conclusion, application of BS developed from rumen bacterial of buffalo has a promising prospect to be used as a biological agent to improve the quality of rice straw as feeding for ruminant.

Keywords: biodecomposer, local buffalo, rumen microbial, chemical composition

Procedia PDF Downloads 173
207 Bioaccessible Phenolics, Phenolic Bioaccessibilities and Antioxidant Activities of Cookies Supplemented with Pumpkin Flour

Authors: Emine Aydin, Duygu Gocmen

Abstract:

In this study, pumpkin flours (PFs) were used to replace wheat flour in cookie formulation at three different levels (10%, 20% and 30% w/w). For this purpose PFs produced by two different applications (with or without metabisulfite pre-treatment) and then dried in freeze dryer. Control sample included no PFs. The total phenolic contents of the cookies supplemented with PFs were higher than that of control and gradually increased in total phenolic contents of cookies with increasing PF supplementation levels. Phenolic content makes also significant contribution on nutritional excellence of the developed cookies. Pre-treatment with metabisulfite (MS) had a positive effect on free, bound and total phenolics of cookies which are supplemented with various levels of MS-PF. This is due to a protective effect of metabisulfite pretreatment for phenolic compounds in the pumpkin flour. Phenolic antioxidants may act and absorb in a different way in humans and thus their antioxidant and health effects will be changed accordingly. In the present study phenolics’ bioavailability of cookies was investigated in order to assess PF as sources of accessible phenolics. The content of bioaccessible phenolics and phenolic bioaccessibility of cookies supplemented with PFs had higher than those of control sample. Cookies enriched with 30% MS-PF had the highest bioaccessible phenolics (597.86 mg GAE 100g-1) and phenolic bioaccessibility (41.71%). MS application in PF production caused a significant increase in phenolic bioaccessibility of cookies. According to all assay (ABTS, CUPRAC, FRAP and DPPH), antioxidant activities of cookies with PFs higher than that of control cookie. It was also observed that the cookies supplemented with MS-PF had significantly higher antioxidant activities than those of cookies including PF. In presented study, antioxidative bioaccessibilities of cookies were also determined. The cookies with PFs had significantly (p ≤ 0.05) higher antioxidative bioaccessibilities than control ones. Increasing PFs levels enhanced antioxidative bioaccessibilities of cookies. As a result, PFs addition improved the nutritional and functional properties of cookie by causing increase in antioxidant activity, total phenolic content, bioaccessible phenolics and phenolic bioaccessibilities.

Keywords: phenolic compounds, antioxidant activity, dietary fiber, pumpkin, freeze drying, cookie

Procedia PDF Downloads 238
206 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 187
205 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 255
204 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations

Authors: Lori W. Gordon, Karen A. Jones

Abstract:

Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.

Keywords: communications, global, infrastructure, technology

Procedia PDF Downloads 56
203 Cocoon Characterization of Sericigenous Insects in North-East India and Prospects

Authors: Tarali Kalita, Karabi Dutta

Abstract:

The North Eastern Region of India, with diverse climatic conditions and a wide range of ecological habitats, makes an ideal natural abode for a good number of silk-producing insects. Cocoon is the economically important life stage from where silk of economic importance is obtained. In recent years, silk-based biomaterials have gained considerable attention, which is dependent on the structure and properties of the silkworm cocoons as well as silk yarn. The present investigation deals with the morphological study of cocoons, including cocoon color, cocoon size, shell weight and shell ratio of eleven different species of silk insects collected from different regions of North East India. The Scanning Electron Microscopic study and X-ray photoelectron spectroscopy were performed to know the arrangement of silk threads in cocoons and the atomic elemental analysis, respectively. Further, collected cocoons were degummed and reeled/spun on a reeling machine or spinning wheel to know the filament length, linear density and tensile strength by using Universal Testing Machine. The study showed significant variation in terms of cocoon color, cocoon shape, cocoon weight and filament packaging. XPS analysis revealed the presence of elements (Mass %) C, N, O, Si and Ca in varying amounts. The wild cocoons showed the presence of Calcium oxalate crystals which makes the cocoons hard and needs further treatment to reel. In the present investigation, the highest percentage of strain (%) and toughness (g/den) were observed in Antheraea assamensis, which implies that the muga silk is a more compact packing of molecules. It is expected that this study will be the basis for further biomimetic studies to design and manufacture artificial fiber composites with novel morphologies and associated material properties.

Keywords: cocoon characterization, north-east India, prospects, silk characterization

Procedia PDF Downloads 61
202 Assessment of Zinc Content in Nuts by Atomic Absorption Spectrometry Method

Authors: Katarzyna Socha, Konrad Mielcarek, Grzegorz Kangowski, Renata Markiewicz-Zukowska, Anna Puscion-Jakubik, Jolanta Soroczynska, Maria H. Borawska

Abstract:

Nuts have high nutritional value. They are a good source of polyunsaturated fatty acids, dietary fiber, vitamins (B₁, B₆, E, K) and minerals: magnesium, selenium, zinc (Zn). Zn is an essential element for proper functioning and development of human organism. Due to antioxidant and anti-inflammatory properties, Zn has an influence on immunological and central nervous system. It also affects proper functioning of reproductive organs and has beneficial impact on the condition of skin, hair, and nails. The objective of this study was estimation of Zn content in edible nuts. The research material consisted of 10 types of nuts, 12 samples of each type: almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios, and walnuts. The samples of nuts were digested in concentrated nitric acid using microwave mineralizer (Berghof, Germany). The concentration of Zn was determined by flame atomic absorption spectrometry method with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. For comparison between the groups, t-Student test was used. The highest content of Zn was shown in pine nuts and cashews: 78.57 ± 21.9, 70.02 ± 10,2 mg/kg, respectively, significantly higher than in other types of nuts. The lowest content of Zn was found in macadamia nuts: 16.25 ± 4.1 mg/kg. The consumption of a standard 42-gram portion of almonds, brazil nuts, cashews, peanuts, pecans, and pine nuts covers the daily requirement for Zn above 15% of recommended daily allowances (RDA) for women, while in the case of men consumption all of the above types of nuts, except peanuts. Selected types of nuts can be a good source of Zn in the diet.

Keywords: atomic absorption spectrometry, microelement, nuts, zinc

Procedia PDF Downloads 172
201 Antimicrobial and Antibiofilm Properties of Fatty Acids Against Streptococcus Mutans

Authors: A. Mulry, C. Kealey, D. B. Brady

Abstract:

Planktonic bacteria can form biofilms which are microbial aggregates embedded within a matrix of extracellular polymeric substances (EPS). They can be found attached to abiotic or biotic surfaces. Biofilms are responsible for oral diseases such as dental caries, gingivitis and the progression of periodontal disease. Biofilms can resist 500 to 1000 times the concentration of biocides and antibiotics used to kill planktonic bacteria. Biofilm development on oral surfaces involves four stages, initial attachment, early development, maturation and dispersal of planktonic cells. The Minimum Inhibitory Concentration (MIC) was determined using a range of saturated and unsaturated fatty acids using the resazurin assay, followed by serial dilution and spot plating on BHI agar plates to establish the Minimum Bactericidal Concentration (MBC). Log reduction of bacteria was also evaluated for each fatty acid. The Minimum Biofilm Inhibition Concentration (MBIC) was determined using crystal violet assay in 96 well plates on forming and pre-formed S. mutans biofilms using BHI supplemented with 1% sucrose. Saturated medium-chain fatty acids Octanoic (C8.0), Decanoic (C10.0) and Undecanoic acid (C11.0) do not display strong antibiofilm properties; however, Lauric (C12.0) and Myristic (C14.0) display moderate antibiofilm properties with 97.83% and 97.5% biofilm inhibition with 1000 µM respectively. Monounsaturated, Oleic acid (C18.1) and polyunsaturated large chain fatty acids, Linoleic acid (C18.2) display potent antibiofilm properties with biofilm inhibition of 99.73% at 125 µM and 100% at 65.5 µM, respectively. Long-chain polyunsaturated Omega-3 fatty acids α-Linoleic (C18.3), Eicosapentaenoic Acid (EPA) (C20.5), Docosahexaenoic Acid (DHA) (C22.6) have displayed strong antibiofilm efficacy from concentrations ranging from 31.25-250µg/ml. DHA is the most promising antibiofilm agent with an MBIC of 99.73% with 15.625µg/ml. This may be due to the presence of six double bonds and the structural orientation of the fatty acid. To conclude, fatty acids displaying the most antimicrobial activity appear to be medium or long-chain unsaturated fatty acids containing one or more double bonds. Most promising agents include Omega-3-fatty acids Linoleic, α-Linoleic, EPA and DHA, as well as Omega-9 fatty acid Oleic acid. These results indicate that fatty acids have the potential to be used as antimicrobials and antibiofilm agents against S. mutans. Future work involves further screening of the most potent fatty acids against a range of bacteria, including Gram-positive and Gram-negative oral pathogens. Future work will involve incorporating the most effective fatty acids onto dental implant devices to prevent biofilm formation.

Keywords: antibiofilm, biofilm, fatty acids, S. mutans

Procedia PDF Downloads 125
200 Structural and Biochemical Characterization of Red and Green Emitting Luciferase Enzymes

Authors: Wael M. Rabeh, Cesar Carrasco-Lopez, Juliana C. Ferreira, Pance Naumov

Abstract:

Bioluminescence, the emission of light from a biological process, is found in various living organisms including bacteria, fireflies, beetles, fungus and different marine organisms. Luciferase is an enzyme that catalyzes a two steps oxidation of luciferin in the presence of Mg2+ and ATP to produce oxyluciferin and releases energy in the form of light. The luciferase assay is used in biological research and clinical applications for in vivo imaging, cell proliferation, and protein folding and secretion analysis. The luciferase enzyme consists of two domains, a large N-terminal domain (1-436 residues) that is connected to a small C-terminal domain (440-544) by a flexible loop that functions as a hinge for opening and closing the active site. The two domains are separated by a large cleft housing the active site that closes after binding the substrates, luciferin and ATP. Even though all insect luciferases catalyze the same chemical reaction and share 50% to 90% sequence homology and high structural similarity, they emit light of different colors from green at 560nm to red at 640 nm. Currently, the majority of the structural and biochemical studies have been conducted on green-emitting firefly luciferases. To address the color emission mechanism, we expressed and purified two luciferase enzymes with blue-shifted green and red emission from indigenous Brazilian species Amydetes fanestratus and Phrixothrix, respectively. The two enzymes naturally emit light of different colors and they are an excellent system to study the color-emission mechanism of luciferases, as the current proposed mechanisms are based on mutagenesis studies. Using a vapor-diffusion method and a high-throughput approach, we crystallized and solved the crystal structure of both enzymes, at 1.7 Å and 3.1 Å resolution respectively, using X-ray crystallography. The free enzyme adopted two open conformations in the crystallographic unit cell that are different from the previously characterized firefly luciferase. The blue-shifted green luciferase crystalized as a monomer similar to other luciferases reported in literature, while the red luciferases crystalized as an octamer and was also purified as an octomer in solution. The octomer conformation is the first of its kind for any insect’s luciferase, which might be relate to the red color emission. Structurally designed mutations confirmed the importance of the transition between the open and close conformations in the fine-tuning of the color and the characterization of other interesting mutants is underway.

Keywords: bioluminescence, enzymology, structural biology, x-ray crystallography

Procedia PDF Downloads 304
199 The Risk of Bleeding in Knee or Shoulder Injections in Patients on Warfarin Treatment

Authors: Muhammad Yasir Tarar

Abstract:

Background: Intraarticular steroid injections are an effective option in alleviating the symptoms of conditions like osteoarthritis, rheumatoid arthritis, crystal arthropathy, and rotator cuff tendinopathy. Most of these injections are conducted in the elderly who are on polypharmacy, including anticoagulants at times. Up to 6% of patients aged 80-84 years have been reported to be taking Warfarin. The literature availability on safety quotient for patients undergoing intraarticular injections on Warfarin is scarce. It has remained debatable over the years which approach is safe for these patients. Continuing warfarin has a theoretical bleeding risk, and stopping it can lead to even severe life-threatening thromboembolic events in high-risk patients. Objectives: To evaluate the risk of bleeding complications in patients on warfarin undergoing intraarticular injections or arthrocentesis. Study Design & Methods: A literature search of MEDLINE (1946 to present), EMBASE (1974 to present), and Cochrane CENTRAL (1988 to present) databases were conducted using any combination of the keywords, Injection, Knee, Shoulder, Joint, Intraarticular, arthrocentesis, Warfarin, and Anticoagulation in November 2020 for articles published in any language with no publication year limit. The study inclusion criteria included reporting on the rate of bleeding complications following injection of the knee or shoulder in patients on warfarin treatment. Randomized control trials and prospective and retrospective study designs were included. An electronic standardized Performa for data extraction was made. The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) the methodology was used. The articles were appraised using the methodological index for nonrandomized studies. The Cochrane Risk of Bias Tool used to assess the risk of bias in included RCTs and the MINORS tool for assessment of bias in observational studies. Results: The search of databases resulted in a total of 852 articles. Relevant articles as per the inclusion criteria were shortlisted, 7 articles deemed suitable to be include. A total of 1033 joints sample size was undertaken with specified knee and shoulder joints of a total of 820. Only 6 joints had bleeding complications, 5 early bleeding at the time of injection or aspiration, and one late bleeding complication with INR of 5, additionally, 2 patients complained of bruising, 3 of pain, and 1 managed for infection. Conclusions: The results of the metanalysis show that it is relatively safe to perform intraarticular injections in patients on Warfarin regardless of the INR range.

Keywords: arthrocentesis, warfarin, bleeding, injection

Procedia PDF Downloads 56
198 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 120