Search results for: print speed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3121

Search results for: print speed

991 Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics

Authors: Tien-Li Chang, Huang-Chi Huang, Zhao-Chi Chen, Wun-Yi Chen

Abstract:

The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications.

Keywords: microfluidic, droplets, sensors, single detection

Procedia PDF Downloads 493
990 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect

Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan

Abstract:

Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing

Keywords: bearing, dipole, noise, sound

Procedia PDF Downloads 294
989 Coalescence Cascade of Vertically-aligned Water Drops on a Super-hydrophobic Surface in Silicone Oil

Authors: M. Brik, S. Harmand, I. Zaaroura

Abstract:

This report, an experimental investigation, concerns the sessile daughter drop remaining during the coalescence of water drops in a liquid-liquid (LL) system. The two drops are initially vertically aligned where the sessile drop is deposited on a chemically treated super-hydrophobic surface of a cube fill of silicone oil. In order to analyze the coalescence dynamics, a series of experiments have been performed using a generation droplets system (KRUSS) that measures contact angles as well coupled with a high-speed camera (Keyence VW-9000E) to record the process at a frame rate of 15000s-1. It’s depicted that in such configuration, the head drop volume has a primordial impact on the dynamics of the coalescence process, especially at the last stage. It’s found that for a sessile drop deposited on a super-hydrophobic surface, where the contact angle is about θ ≈ 145°, the coalescence process is remarked to be complete without any recoiling of the coalesced drop or a generation of a sessile daughter drop at the super-hydrophobic surface when the head drop volume is small enough (Vₐᵦ< Vₛ up to Vₐᵦ = 3Vₛ). On the other side, the coalescence process starts to be followed by jumping off the resulted drop as well as a remaining of a small sessile daughter drop on the bottom surface of the cube from a head drop volume Vₐᵦ of about 4 times than that of the sessile drop Vₛ.

Keywords: drops coalescence, dispersed multiphase flow, drops dynamics, liquid-liquid system

Procedia PDF Downloads 144
988 Emotion Processing Differences Between People

Authors: Elif Unveren, Ozlem Bozkurt

Abstract:

Emotion processing happens when someone has a negative, stressful experience and gets over it in time, and it is a different experience for every person. As to look into emotion processing can be categorised by intensity, awareness, coordination, speed, accuracy and response. It may vary depending on people’s age, sex and conditions. Each emotion processing shows different activation patterns in different brain regions. Activation is significantly higher in the right frontal areas. The highest activation happens in extended frontotemporal areas during the processing of happiness, sadness and disgust. Those emotions also show widely disturbed differences and get produced earlier than anger and fear. For different occasions, listed variables may have less or more importance. A borderline personality disorder is a condition that creates an unstable personality, sudden mood swings and unpredictability of actions. According to a study that was made with healthy people and people who had BPD, there were significant differences in some categories of emotion processing, such as intensity, awareness and accuracy. According to another study that was made to show the emotional processing differences between puberty and was made for only females who were between the ages of 11 and 17, it was perceived that for different ages and hormone levels, different parts of the brain are used to understand the given task. Also, in the different study that was made for kids that were between the age of 4 and 15, it was observed that the older kids were processing emotion more intensely and expressing it to a greater extent. There was a significant increase in fear and disgust in those matters. To sum up, we can say that the activity of undertaking negative experiences is a unique thing for everybody for many different reasons.

Keywords: age, sex, conditions, brain regions, emotion processing

Procedia PDF Downloads 85
987 Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Authors: Anwar U. Haque, Waqar Asrar, Ashraf Ali Omar, Erwin Sulaeman, Jaffer Sayed Mohamed Ali

Abstract:

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Keywords: wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics

Procedia PDF Downloads 469
986 Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Based on 2D Van Der Waals Heterostructures

Authors: Yunpeng Xia, Jiajia Zha, Haoxin Huang, Hau Ping Chan, Chaoliang Tan

Abstract:

Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe₂ in different phases as the charge trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where the metallic 1T′-MoTe₂ or semiconducting 2H-MoTe₂ nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T′-MoTe₂ presents much better performance, including a larger memory window, faster switching speed (100 ns) and higher extinction ratio (107), than that of the device based on MoS₂/h-BN/2H-MoTe₂ heterostructure. Moreover, the device based on MoS₂/h-BN/1T′-MoTe₂ heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.

Keywords: crystal Phase, 2D van der Waals heretostructure, flash memory device, floating gate

Procedia PDF Downloads 54
985 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 78
984 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: circularity, diameter error, drilling canned cycle, pareto ANOVA, surface roughness

Procedia PDF Downloads 286
983 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine

Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi

Abstract:

One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.

Keywords: Combustion, Optically Accessible Engine, Spark-Ignition Engine, Sparl Orientation, Kernel Growth

Procedia PDF Downloads 142
982 Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel

Authors: Nixon Kuruvila, H. V. Ravindra

Abstract:

Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.

Keywords: dimensional accuracy (DA), regression analysis (RA), Taguchi method (TM), volumetric material removal rate (VMRR)

Procedia PDF Downloads 409
981 Rotorcraft Performance and Environmental Impact Evaluation by Multidisciplinary Modelling

Authors: Pierre-Marie Basset, Gabriel Reboul, Binh DangVu, Sébastien Mercier

Abstract:

Rotorcraft provides invaluable services thanks to their Vertical Take-Off and Landing (VTOL), hover and low speed capabilities. Yet their use is still often limited by their cost and environmental impact, especially noise and energy consumption. One of the main brakes to the expansion of the use of rotorcraft for urban missions is the environmental impact. The first main concern for the population is the noise. In order to develop the transversal competency to assess the rotorcraft environmental footprint, a collaboration has been launched between six research departments within ONERA. The progress in terms of models and methods are capitalized into the numerical workshop C.R.E.A.T.I.O.N. “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network”. A typical mission for which the environmental impact issue is of great relevance has been defined. The first milestone is to perform the pre-sizing of a reference helicopter for this mission. In a second milestone, an alternate rotorcraft concept has been defined: a tandem rotorcraft with optional propulsion. The key design trends are given for the pre-sizing of this rotorcraft aiming at a significant reduction of the global environmental impact while still giving equivalent flight performance and safety with respect to the reference helicopter. The models and methods have been improved for catching sooner and more globally, the relative variations on the environmental impact when changing the rotorcraft architecture, the pre-design variables and the operation parameters.

Keywords: environmental impact, flight performance, helicopter, multi objectives multidisciplinary optimization, rotorcraft

Procedia PDF Downloads 270
980 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication

Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu

Abstract:

The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in the quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in the quadratic extension domain. The sub-expanded domain Fp₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, The output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (AB+CD)r⁻¹ mod form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.

Keywords: sm9, hardware, NLP, Montgomery

Procedia PDF Downloads 8
979 Effect of White Roofing on Refrigerated Buildings

Authors: Samuel Matylewicz, K. W. Goossen

Abstract:

The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.

Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes

Procedia PDF Downloads 129
978 An Experimental Study on the Variability of Nonnative and Native Inference of Word Meanings in Timed and Untimed Conditions

Authors: Swathi M. Vanniarajan

Abstract:

Reading research suggests that online contextual vocabulary comprehension while reading is an interactive and integrative process. One’s success in it depends on a variety of factors including the amount and the nature of available linguistic and nonlinguistic cues, his/her analytical and integrative skills, schema memory (content familiarity), and processing speed characterized along the continuum of controlled to automatic processing. The experiment reported here, conducted with 30 native speakers as one group and 30 nonnative speakers as another group (all graduate students), hypothesized that while working on (24) tasks which required them to comprehend an unfamiliar word in real time without backtracking, due to the differences in the nature of their respective reading processes, the nonnative subjects would be less able to construct the meanings of the unknown words by integrating the multiple but sufficient contextual cues provided in the text but the native subjects would be able to. The results indicated that there were significant inter-group as well as intra-group differences in terms of the quality of definitions given. However, when given additional time, while the nonnative speakers could significantly improve the quality of their definitions, the native speakers in general would not, suggesting that all things being equal, time is a significant factor for success in nonnative vocabulary and reading comprehension processes and that accuracy precedes automaticity in the development of nonnative reading processes also.

Keywords: reading, second language processing, vocabulary comprehension

Procedia PDF Downloads 166
977 Environmental Online Campaigns Through Website Interactivity: The Case of Malaysia Environmental NGOs (MENGO)

Authors: Mohd Fadzil Mohd Idris, Aida Nasirah Abdullah, Kalthom Husain, Hanipah Hussin

Abstract:

Online campaigns reflect all the advantages; namely speed, low cost, accessibility, customization, interactivity, and persuasive ability over other media channels. Normally via websites, expensive campaigns could be done not only faster and cheaper, but also successfully. Web interactivity seems to be highly beneficial to ENGOs in advocating environmental campaigns and trigger interaction. This paper looks into the environmental online campaigns through websites of the environmental NGOs in Malaysia (MENGO); particularly on how is web interactivity structured and employed by the selected the MENGO to conduct campaigns on important issues and encourage dialogue among the audience. In this study, a quantitative method for website content analysis was conducted to investigate the availability of the coded units and to determine on which level(s) the units were placed. Twelve (12) interactivity features were coded, including the placement of units of analysis for interactivity category as units of analysis until the fourth level (Level 0-Level 3). The result demonstrates how the MENGO do not effectively structure and employ the web interactivity to conduct campaigns on important issues and encourage dialogue among the audience. It is suggested that the MENGO should redevelop the interactive website in order to effectively advocate environmental campaigns on important issues and encourage dialogue among the audience.

Keywords: environmental NGOs (ENGO), Malaysia environmental NGOs (MENGO), internet, website, online campaigns, web interactivity

Procedia PDF Downloads 440
976 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, Nile delta, modeling

Procedia PDF Downloads 288
975 Understanding Innovation by Analyzing the Pillars of the Global Competitiveness Index

Authors: Ujjwala Bhand, Mridula Goel

Abstract:

Global Competitiveness Index (GCI) prepared by World Economic Forum has become a benchmark in studying the competitiveness of countries and for understanding the factors that enable competitiveness. Innovation is a key pillar in competitiveness and has the unique property of enabling exponential economic growth. This paper attempts to analyze how the pillars comprising the Global Competitiveness Index affect innovation and whether GDP growth can directly affect innovation outcomes for a country. The key objective of the study is to identify areas on which governments of developing countries can focus policies and programs to improve their country’s innovativeness. We have compiled a panel data set for top innovating countries and large emerging economies called BRICS from 2007-08 to 2014-15 in order to find the significant factors that affect innovation. The results of the regression analysis suggest that government should make policies to improve labor market efficiency, establish sophisticated business networks, provide basic health and primary education to its people and strengthen the quality of higher education and training services in the economy. The achievements of smaller economies on innovation suggest that concerted efforts by governments can counter any size related disadvantage, and in fact can provide greater flexibility and speed in encouraging innovation.

Keywords: innovation, global competitiveness index, BRICS, economic growth

Procedia PDF Downloads 268
974 Feasibility Study of Wind Energy Potential in Turkey: Case Study of Catalca District in Istanbul

Authors: Mohammed Wadi, Bedri Kekezoglu, Mustafa Baysal, Mehmet Rida Tur, Abdulfetah Shobole

Abstract:

This paper investigates the technical evaluation of the wind potential for present and future investments in Turkey taking into account the feasibility of sites, installments, operation, and maintenance. This evaluation based on the hourly measured wind speed data for the three years 2008–2010 at 30 m height for Çatalca district. These data were obtained from national meteorology station in Istanbul–Republic of Turkey are analyzed in order to evaluate the feasibility of wind power potential and to assure supreme assortment of wind turbines installing for the area of interest. Furthermore, the data are extrapolated and analyzed at 60 m and 80 m regarding the variability of roughness factor. Weibull bi-parameter probability function is used to approximate monthly and annually wind potential and power density based on three calculation methods namely, the approximated, the graphical and the energy pattern factor methods. The annual mean wind power densities were to be 400.31, 540.08 and 611.02 W/m² for 30, 60, and 80 m heights respectively. Simulation results prove that the analyzed area is an appropriate place for constructing large-scale wind farms.

Keywords: wind potential in Turkey, Weibull bi-parameter probability function, the approximated method, the graphical method, the energy pattern factor method, capacity factor

Procedia PDF Downloads 259
973 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 86
972 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: connecting rod, ASTM a514 cold quenched material, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 300
971 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi Parameter Design, surface roughness, Wire EDM, dimensional accuracy

Procedia PDF Downloads 371
970 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 94
969 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).

Keywords: motion detection, motion tracking, trajectory analysis, video surveillance

Procedia PDF Downloads 548
968 Process of Dimensioning Small Type Annular Combustors

Authors: Saleh B. Mohamed, Mohamed H. Elhsnawi, Mesbah M. Salem

Abstract:

Current and future applications of small gas turbine engines annular type combustors have requirements presenting difficult disputes to the combustor designer. Reduced cost and fuel consumption and improved durability and reliability as well as higher temperatures and pressures for such application are forecast. Coupled with these performance requirements, irrespective of the engine size, is the demand to control the pollutant emissions, namely the oxides of nitrogen, carbon monoxide, smoke and unburned hydrocarbons. These technical and environmental challenges have made the design of small size combustion system a very hard task. Thus, the main target of this work is to generalize a calculation method of annular type combustors for small gas turbine engines that enables to understand the fundamental concepts of the coupled processes and to identify the proper procedure that formulates and solves the problems in combustion fields in as much simplified and accurate manner as possible. The combustion chamber in task is designed with central vaporizing unit and to deliver 516.3 KW of power. The geometrical constraints are 142 mm & 140 mm overall length and casing diameter, respectively, while the airflow rate is 0.8 kg/sec and the fuel flow rate is 0.012 kg/sec. The relevant design equations are programmed by using MathCAD language for ease and speed up of the calculation process.

Keywords: design of gas turbine, small engine design, annular type combustors, mechanical engineering

Procedia PDF Downloads 408
967 Ground Effect on Marine Midge Water Surface Locomotion

Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong

Abstract:

Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.

Keywords: ground effect, water locomotion, CFD, aerodynamic lift

Procedia PDF Downloads 81
966 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 313
965 Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed

Authors: Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid, Ayman Mahrous

Abstract:

This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms.

Keywords: cosmic rays, Forbush decrease, solar wind, neutron monitor

Procedia PDF Downloads 46
964 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading

Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed

Abstract:

Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.

Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum

Procedia PDF Downloads 388
963 Measurement of Turbulence with PITOT Static Tube in Low Speed Subsonic Wind Tunnel

Authors: Gopikrishnan, Bharathiraja, Boopalan, Jensin Joshua

Abstract:

The Pitot static tube has proven their values and practicability in measuring velocity of fluids for many years. With the aim of extensive usage of such Pitot tube systems, one of the major enabling technologies is to use the design and fabricate a high sensitive pitot tube for the purpose of calibration of the subsonic wind tunnel. Calibration of wind tunnel is carried out by using different instruments to measure variety of parameters. Using too many instruments inside the tunnel may not only affect the fluid flow but also lead to drag or losses. So, it is essential to replace the different system with a single system that would give all the required information. This model of high sensitive Pitot tube has been designed to ease the calibration process. It minimizes the use of different instruments and this single system is capable of calibrating the wind tunnel test section. This Pitot static tube is completely digitalized and so that the velocity data`s can be collected directly from the instrument. Since the turbulence factors are dependent on velocity, the data’s that are collected from the pitot static tube are then processed and the level of turbulence in the fluid flow is calculated. It is also capable of measuring the pressure distribution inside the wind tunnel and the flow angularity of the fluid. Thus, the well-designed high sensitive Pitot static tube is utilized in calibrating the tunnel and also for the measurement of turbulence.

Keywords: pitot static tube, turbulence, wind tunnel, velocity

Procedia PDF Downloads 526
962 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique

Procedia PDF Downloads 147