Search results for: inventory classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2898

Search results for: inventory classification

768 Assessing the Impact of Urbanization on Flood Risk: A Case Study

Authors: Talha Ahmed, Ishtiaq Hassan

Abstract:

Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.

Keywords: urbanization, flood, flood risk, GIS

Procedia PDF Downloads 175
767 A Comprehensive Review on Health Hazards and Challenges for Microbial Remediation of Persistent Organic Pollutants

Authors: Nisha Gaur, K.Narasimhulu, Pydi Setty Yelamarthy

Abstract:

Persistent organic pollutants (POPs) have become a great concern due to their toxicity, transformation and bioaccumulation property. Therefore, this review highlights the types, sources, classification health hazards and mobility of organochlorine pesticides, industrial chemicals and their by-products. Moreover, with the signing of Aarhus and Stockholm convention on POPs there is an increased demand to identify and characterise such chemicals from industries and environment which are toxic in nature or to existing biota. Due to long life, persistent nature they enter into body through food and transfer to all tropic levels of ecological unit. In addition, POPs are lipophilic in nature and accumulate in lipid-containing tissues and organs which further indicates the adverse symptoms after the threshold limit. Though, several potential enzymes are reported from various categories of microorganism and their interaction with POPs may break down the complex compounds either through biodegradation, biostimulation or bioaugmentation process, however technological advancement and human activities have also indicated to explore the possibilities for the role of genetically modified organisms and metagenomics and metabolomics. Though many studies have been done to develop low cost, effective and reliable method for detection, determination and removal of ultra-trace concentration of persistent organic pollutants (POPs) but due to insufficient knowledge and non-feasibility of technique, the safe management of POPs is still a global challenge.

Keywords: persistent organic pollutants, bioaccumulation, biostimulation, microbial remediation

Procedia PDF Downloads 298
766 Personality Moderates the Relation Between Mother´s Emotional Intelligence and Young Children´s Emotion Situation Knowledge

Authors: Natalia Alonso-Alberca, Ana I. Vergara

Abstract:

From the very first years of their life, children are confronted with situations in which they need to deal with emotions. The family provides the first emotional experiences, and it is in the family context that children usually take their first steps towards acquiring emotion knowledge. Parents play a key role in this important task, helping their children develop emotional skills that they will need in challenging situations throughout their lives. Specifically, mothers are models imitated by their children. They create specific spatial and temporal contexts in which children learn about emotions, their causes, consequences, and complexity. This occurs not only through what mothers say or do directly to the child. Rather, it occurs, to a large extent, through the example that they set using their own emotional skills. The aim of the current study was to analyze how maternal abilities to perceive and to manage emotions influence children’s emotion knowledge, specifically, their emotion situation knowledge, taking into account the role played by the mother’s personality, the time spent together, and controlling the effect of age, sex and the child’s verbal abilities. Participants were 153 children from 4 schools in Spain, and their mothers. Children (41.8% girls)age range was 35 - 72 months. Mothers (N = 140) age (M = 38.7; R = 27-49). Twelve mothers had more than one child participating in the study. Main variables were the child´s emotion situation knowledge (ESK), measured by the Emotion Matching Task (EMT), and receptive language, using the Picture Vocabulary Test. Also, their mothers´ Emotional Intelligence (EI), through the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT) and personality, with The Big Five Inventory were analyzed. The results showed that the predictive power of maternal emotional skills on ESK was moderated by the mother’s personality, affecting both the direction and size of the relationships detected: low neuroticism and low openness to experience lead to a positive influence of maternal EI on children’s ESK, while high levels in these personality dimensions resulted in a negative influence on child´s ESK. The time that the mother and the child spend together was revealed as a positive predictor of this EK, while it did not moderate the influence of the mother's EI on child’s ESK. In light of the results, we can infer that maternal EI is linked to children’s emotional skills, though high level of maternal EI does not necessarily predict a greater degree of emotionknowledge in children, which seems rather to depend on specific personality profiles. The results of the current study indicate that a good level of maternal EI does not guarantee that children will learn the emotional skills that foster prosocial adaptation. Rather, EI must be accompanied by certain psychological characteristics (personality traits in this case).

Keywords: emotional intelligence, emotion situation knowledge, mothers, personality, young children

Procedia PDF Downloads 133
765 The Role of Situational Attribution Training in Reducing Automatic In-Group Stereotyping in Females

Authors: Olga Mironiuk, Małgorzata Kossowska

Abstract:

The aim of the present study was to investigate the influence of Situational Attribution Training on reducing automatic in-group stereotyping in females. The experiment was conducted with the control of age and level of prejudice. 90 female participants were randomly assigned to two conditions: experimental and control group (each group was also divided into younger- and older-aged condition). Participants from the experimental condition were subjected to more extensive training. In the first part of the experiment, the experimental group took part in the first session of Situational Attribution Training while the control group participated in the Grammatical Training Control. In the second part of the research both groups took part in the Situational Attribution Training (which was considered as the second training session for the experimental group and the first one for the control condition). The training procedure was based on the descriptions of ambiguous situations which could be explained using situational or dispositional attributions. The participant’s task was to choose the situational explanation from two alternatives, out of which the second one presented the explanation based on neutral or stereotypically associated with women traits. Moreover, the experimental group took part in the third training session after two- day time delay, in order to check the persistence of the training effect. The main hypothesis stated that among participants taking part in the more extensive training, the automatic in-group stereotyping would be less frequent after having finished training sessions. The effectiveness of the training was tested by measuring the response time and the correctness of answers: the longer response time for the examples where one of two possible answers was based on the stereotype trait and higher correctness of answers was considered to be a proof of the training effectiveness. As the participants’ level of prejudice was controlled (using the Ambivalent Sexism Inventory), it was also assumed that the training effect would be weaker for participants revealing a higher level of prejudice. The obtained results did not confirm the hypothesis based on the response time: participants from the experimental group responded faster in case of situations where one of the possible explanations was based on stereotype trait. However, an interesting observation was made during the analysis of the answers’ correctness: regardless the condition and age group affiliation, participants made more mistakes while choosing the situational explanations when the alternative was based on stereotypical trait associated with the dimension of warmth. What is more, the correctness of answers was higher in the third training session for the experimental group in case when the alternative of situational explanation was based on the stereotype trait associated with the dimension of competence. The obtained results partially confirm the effectiveness of the training.

Keywords: female, in-group stereotyping, prejudice, situational attribution training

Procedia PDF Downloads 187
764 Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand

Authors: Natapol Pumipuntu

Abstract:

Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection.

Keywords: Staphylococcus argenteus, subclinical bovine mastitis, Staphylococcus aureus complex, mass spectrometry, MLST

Procedia PDF Downloads 151
763 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 128
762 Integrated Information Approach to Inbound Logistics in Indian Steel Sector

Authors: N. Jena, Nitin Seth

Abstract:

Globalization and free trade has forced the organizations to continuously rethink and rework on the increasing cost of logistics. World wide, it is visualized that on one side the steel sector is witnessing rapid growth and on the other side it is facing huge challenges in terms of availability of raw materials for uninterrupted production. Inbound logistics also gains significant importance for ensuring the timely availability of raw materials. It is seen that in Indian steel sector logistic cost is still very large and challenging. Effectively managing the inbound logistics in steel decides the profitability and serviceability of the organization. Effective management of inbound logistics also has a major role on the inventory of the organization. Since, the logistics for the steel industry in India is evolving rapidly and it is the interplay of infrastructure, technology and new types of service providers that will define whether the industry is able to help its customers to reduce their logistics costs. Integration of Logistics has been treated as one of the most potential area for the companies to provide a base for cost reduction. In spite of the proven area for benefits for the industry, it is very surprising that none of the researchers have explored this area. Although, many researchers explored the subject of logistics in steel industry, but their perspective varied from exploring and understanding the associated cost and finding out the relations between them. Visualizing a potential gap, the present research is under taken to explore the integration opportunities in inbound logistics for steel sector. Typically in Indian steel sector where in most of the manufacturers depend on imported materials for processing the logistics is very challenging and accounts for transactions at supplier – who is situated in different country, shipper- who is transporting the material to the host country, regulators in both countries-that include customs and various clearing agents, local logistics service providers and local transporters/handlers. It is seen that In bound logistics cost in the steel sector is very high and accounts for about 15-16% of the turn over, integration of information across different channels provides and opportunity for improvements and growth of the organization. In the present paper, a case of leading steel manufacturer has been taken and the potentials for integration of information across various partners have been identified. The paper provides the identification of grey area in steel sector for major improvements in cycle time and lowering the inventories by integration of information. Finally, based on integration of information, the paper presents a business information framework for steel sector.

Keywords: integration, steel sectors, suppliers, shippers, customs and cargo agents, transporters

Procedia PDF Downloads 341
761 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 313
760 Estimating Air Particulate Matter 10 Using Satellite Data and Analyzing Its Annual Temporal Pattern over Gaza Strip, Palestine

Authors: ِAbdallah A. A. Shaheen

Abstract:

Gaza Strip faces economic and political issues such as conflict, siege and urbanization; all these have led to an increase in the air pollution over Gaza Strip. In this study, Particulate matter 10 (PM10) concentration over Gaza Strip has been estimated by Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) data, based on a multispectral algorithm. Simultaneously, in-situ measurements for the corresponding particulate are acquired for selected time period. Landsat and ground data for eleven years are used to develop the algorithm while four years data (2002, 2006, 2010 and 2014) have been used to validate the results of algorithm. The developed algorithm gives highest regression, R coefficient value i.e. 0.86; RMSE value as 9.71 µg/m³; P values as 0. Average validation of algorithm show that calculated PM10 strongly correlates with measured PM10, indicating high efficiency of algorithm for the mapping of PM10 concentration during the years 2000 to 2014. Overall results show increase in minimum, maximum and average yearly PM10 concentrations, also presents similar trend over urban area. The rate of urbanization has been evaluated by supervised classification of the Landsat image. Urban sprawl from year 2000 to 2014 results in a high concentration of PM10 in the study area.

Keywords: PM10, landsat, atmospheric reflectance, Gaza strip, urbanization

Procedia PDF Downloads 253
759 Land Suitability Approach as an Effort to Design a Sustainable Tourism Area in Pacet Mojokerto

Authors: Erina Wulansari, Bambang Soemardiono, Ispurwono Soemarno

Abstract:

Designing sustainable tourism area is defined as an attempt to design an area, that brings the natural environmental conditions as components are available with a wealth of social conditions and the conservation of natural and cultural heritage. To understanding tourism area in this study is not only focus on the location of the tourist object, but rather to a tourist attraction around the area, tourism objects such as the existence of residential area (settlement), a commercial area, public service area, and the natural environmental area. The principle of success in designing a sustainable tourism area is able to integrate and balance between the limited space and the variety of activities that’s always continuously to growth up. The limited space in this area of tourism needs to be managed properly to minimize the damage of environmental as a result of tourism activities hue. This research aims to identify space in this area of tourism through land suitability approach as an effort to create a sustainable design, especially in terms of ecological. This study will be used several analytical techniques to achieve the research objectives as superimposing analysis with GIS 9.3 software and Analysis Hierarchy Process. Expected outcomes are in the form of classification and criteria of usable space in designing embodiment tourism area. In addition, this study can provide input to the order of settlement patterns as part of the environment in the area of sustainable tourism.

Keywords: sustainable tourism area, land suitability, limited space, environment, criteria

Procedia PDF Downloads 503
758 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 73
757 Intelligent Fishers Harness Aquatic Organisms and Climate Change

Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee

Abstract:

Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.

Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery

Procedia PDF Downloads 111
756 Coaching for Lecturers at German Universities: An Inventory Based on a Qualitative Interview Study

Authors: Freya Willicks

Abstract:

The society of the 21st century is characterized by dynamic and complexity, developments that also shape universities and university life. The Bologna reform, for example, has led to restructuring at many European universities. Today's university teachers, therefore, have to meet many expectations: Their tasks include not only teaching but also the general improvement of the quality of teaching, good research, the management of various projects or the development of their own personal skills. This requires a high degree of flexibility and openness to change. The resulting pressure can often lead to exhaustion. Coaching can be a way for university teachers to cope with these pressures because it gives them the opportunity to discuss stressful situations with a coach and self-reflect on them. As a result, more and more universities in Europe offer to coach to their teachers. An analysis of the services provided at universities in Germany, however, quickly reveals an immense disagreement with regard to the understanding of ‘coaching’. A variety of terms is used, such as coaching, counselling or supervision. In addition, each university defines its offer individually, from process-oriented consulting to expert consulting, from group training to individual coaching. The biographic backgrounds of those who coach are also very divergent, both external and internal coaches can be suitable. These findings lead to the following questions: Which structural characteristics for coaching at universities have been proven successful? What competencies should a good coach for university lecturers have? In order to answer these questions, a qualitative study was carried out. In a first step, qualitative semi-structured interviews (N = 14) were conducted, on the one hand with coaches for university teachers and on the other hand with university teachers who have been coached. In a second step, the interviews were transcribed and analyzed using Mayring's qualitative content analysis. The study shows how great the potential of coaching can be for university teachers, who otherwise have little opportunity to talk about their teaching in a private setting. According to the study, the coach should neither be a colleague nor a superior of the coachee but should take an independent perspective, as this is the only way for the coachee to openly reflect on himself/herself. In addition, the coach should be familiar with the university system, i.e., be an academic himself/herself. Otherwise, he/she cannot fully understand the complexity of the teaching situation and the role expectations. However, internal coaches do not necessarily have much coaching experience or explicit coaching competencies. They often come from the university's own didactics department, are experts in didactics, but do not necessarily have a certified coaching education. Therefore, it is important to develop structures and guidelines for internal coaches to support their coaching. In further analysis, such guidelines will be developed on the basis of these interviews.

Keywords: coaching, university coaching, university didactics, qualitative interviews

Procedia PDF Downloads 112
755 Gender Differences in Adolescent Avatars: Gender Consistency and Masculinity-Femininity of Nicknames and Characters

Authors: Monika Paleczna, Małgorzata Holda

Abstract:

Choosing an avatar's gender in a computer game is one of the key elements in the process of creating an online identity. The selection of a male or female avatar can define the entirety of subsequent decisions regarding both appearance and behavior. However, when the most popular games available for the Nintendo console in 1998 were analyzed, it turned out that 41% of computer games did not have female characters. Nowadays, players create their avatars based mainly on binary gender classification, with male and female characters to choose from. The main aim of the poster is to explore gender differences in adolescent avatars. 130 adolescents aged 15-17 participated in the study. They created their avatars and then played a computer game. The creation of the avatar was based on the choice of gender, then physical and mental characteristics. Data on gender consistency (consistency between participant’s sex and gender selected for the avatar) and masculinity-femininity of avatar nicknames and appearance will be presented. The masculinity-femininity of avatar nicknames and appearance was assessed by expert raters on a very masculine to very feminine scale. Additionally, data on the relationships of the perceived levels of masculinity-femininity with hostility-friendliness and the intelligence of avatars will be shown. The dimensions of hostility-friendliness and intelligence were also assessed by expert raters on scales ranging from very hostile to very friendly and from very low intelligence to very high intelligence.

Keywords: gender, avatar, adolescence, computer games

Procedia PDF Downloads 214
754 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore

Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski

Abstract:

Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.

Keywords: solar insulation film, building energy efficiency, tropics, cooling load

Procedia PDF Downloads 193
753 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat

Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh

Abstract:

Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility. Two groups are albumin and globulin dissolving in water and salt solutions possessing metabolic activities. Two other groups are inactive and non-dissolvable and contain glutelins or glutenins and prolamins or gliadins. Gliadins are major components of the storage proteins in wheat endosperm. Gliadin proteins are separated into three groups based on electrophoretic mobility: α/β-gliadin, γ-gliadin, and ω-gliadin. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, involving coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus, three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 37 of the 40 accessions (93%) carried 210 bp allele, and three accessions (8%) did not yield any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.

Keywords: diploied wheat, gliadin, Triticum boeoticum, Triticum urartu

Procedia PDF Downloads 251
752 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct

Procedia PDF Downloads 225
751 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 422
750 Relevance of the Variation in the Angulation of Palatal Throat Form to the Orientation of the Occlusal Plane- A Cephalometric Study

Authors: Sanath Kumar Shetty, Sanya Sinha, K. Kamalakanth Shenoy

Abstract:

The posterior reference for the ala tragal line is a cause of confusion, with different authors suggesting different locations as to the superior, middle or inferior part of the tragus. This study was conducted on 200 subjects to evaluate if any correlation exists between the variation of angulation of palatal throat form and the relative parallelism of occlusal plane to ala-tragal line at different tragal levels. A Custom made Occlusal Plane Analyzer was used to check the parallelism between the ala-tragal line and occlusal plane. A lateral cephalogram was shot for each subject to measure the angulation of the palatal throat form. Fisher’s exact test was used to evaluate the correlation between the angulation of the palatal throat form and the relative parallelism of occlusal plane to the ala tragal line. Also, a classification was formulated for the palatal throat form, based on confidence interval. From the results of the study, the inferior part, middle part and superior part of the tragus were seen as the reference points in 49.5%, 32% and 18.5% of the subjects respectively. Class I palatal throat form (41degree-50 degree), Class II palatal throat form (below 41 degree) and Class III palatal throat form (above 50 degree) were seen in 42%, 43% and 15% of the subjects respectively. It was also concluded that there is no significant correlation between the variation in the angulations of the palatal throat form and the relative parallelism of occlusal plane to the ala-tragal line.

Keywords: Ala-Tragal line, occlusal plane, palatal throat form, cephalometry

Procedia PDF Downloads 310
749 Effect of Cognitive Rehabilitation in Pediatric Population with Acquired Brain Injury: A Pilot Study

Authors: Carolina Beltran, Carlos De Los Reyes

Abstract:

Acquired brain injury (ABI) is any physical and functional injury secondary to events that affect the brain tissue. It is one of the biggest causes of disability in the world and it has a high annual incidence in the pediatric population. There are several causes of ABI such as traumatic brain injury, central nervous system infection, stroke, hypoxia, tumors and others. The consequences can be cognitive, behavioral, emotional and functional. The cognitive rehabilitation is necessary to achieve the best outcomes for pediatric people with ABI. Cognitive orientation to daily occupational performance (CO-OP) is an individualized client-centered, performance-based, problem-solving approach that focuses on the strategy used to support the acquisition of three client-chosen goals. It has demonstrated improvements in the pediatric population with other neurological disorder but not in Spanish speakers with ABI. Aim: The main objective of this study was to determine the efficacy of cognitive orientation to daily occupational performances (CO-OP) adapted to Spanish speakers, in the level of independence and behavior in a pediatric population with ABI. Methods: Case studies with measure pre/post-treatment were used in three children with ABI, sustained at least before 6 months assessment, in school, aged 8 to 16 years, age ABI after 6 years old and above average intellectual ability. Twelve sessions of CO-OP adapted to Spanish speakers were used and videotaped. The outcomes were based on cognitive, behavior and functional independence measurements such as Child Behavior Checklist (CBCL), Behavior Rating Inventory of Executive Function (BRIEF), The Vineland Adaptive Behavior Scales (VINELAND, Social Support Scale (MOS-SSS) and others neuropsychological measures. This study was approved by the ethics committee of Universidad del Norte in Colombia. Informed parental written consent was obtained for all participants. Results: children were able to identify three goals and use the global strategy ‘goal-plan-do-check’ during each session. Verbal self-instruction was used by all children. CO-OP showed a clinically significant improvement in goals regarding with independence level and behavior according to parents and teachers. Conclusion: The results indicated that CO-OP and the use of a global strategy such as ‘goal-plan-do-check’ can be used in children with ABI in order to improve their specific goals. This is a preliminary version of a big study carrying in Colombia as part of the experimental design.

Keywords: cognitive rehabilitation, acquired brain injury, pediatric population, cognitive orientation to daily occupational performance

Procedia PDF Downloads 106
748 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 123
747 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer

Authors: Rehan Siddiqui, Brendan Quine

Abstract:

The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.

Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases

Procedia PDF Downloads 336
746 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 546
745 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
744 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect

Authors: Yi-Tung Lin

Abstract:

Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.

Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model

Procedia PDF Downloads 127
743 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 393
742 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal

Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali

Abstract:

The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.

Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management

Procedia PDF Downloads 81
741 Health Care Waste Management Practices in Liberia: An Investigative Case Study

Authors: V. Emery David Jr., J. Wenchao, D. Mmereki, Y. John, F. Heriniaina

Abstract:

Healthcare waste management continues to present an array of challenges for developing countries, and Liberia is of no exception. There is insufficient information available regarding the generation, handling, and disposal of health care waste. This face serves as an impediment to healthcare management schemes. The specific objective of this study is to present an evaluation of the current health care management practices in Liberia. It also presented procedures, techniques used, methods of handling, transportation, and disposal methods of wastes as well as the quantity and composition of health care waste. This study was conducted as an investigative case study, covering three different health care facilities; a hospital, a health center, and a clinic in Monrovia, Montserrado County. The average waste generation was found to be 0-7kg per day at the clinic and health center and 8-15kg per/day at the hospital. The composition of the waste includes hazardous and non-hazardous waste i.e. plastic, papers, sharps, and pathological elements etc. Nevertheless, the investigation showed that the healthcare waste generated by the surveyed healthcare facilities were not properly handled because of insufficient guidelines for separate collection, and classification, and adequate methods for storage and proper disposal of generated wastes. This therefore indicates that there is a need for improvement within the healthcare waste management system to improve the existing situation.

Keywords: disposal, healthcare waste, management, Montserrado County, Monrovia

Procedia PDF Downloads 345
740 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood

Authors: Renate Gericke, Carol Long

Abstract:

Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.

Keywords: attachment, children at risk, middle childhood, non-western context

Procedia PDF Downloads 192
739 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205