Search results for: bi-directional long and short-term memory networks
7416 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 1147415 Sustainable Community Education: Strategies for Long-Term Impact
Authors: Kariman Abdelaziz Ahmed Ali Hamzawy
Abstract:
Amidst the growing global challenges facing communities, from climate change to educational gaps, sustainable community education has emerged as a vital tool for ensuring comprehensive and enduring development. This research aims to explore effective strategies for sustainable community education that can lead to long-term impacts on local communities. The study begins by defining the concept of sustainable education within a community context and reviews the current literature on the topic. It then presents case studies from various communities around the world where sustainable educational strategies have been successfully implemented. These case studies illustrate how sustainable education can enhance community engagement, build local capacities, and improve quality of life in sustainable ways. The findings from these studies are analyzed to identify the key factors contributing to the success of sustainable educational programs. These factors include partnerships between different sectors (governmental, private, and community), the innovative use of technology, and the adaptation of educational curricula to meet the unique needs of the community. The research also offers practical recommendations on designing and implementing sustainable educational programs, emphasizing the integration of formal and informal education, promoting lifelong learning, and developing local resources. It addresses potential challenges and ways to overcome them to ensure the long-term sustainability of these programs. In conclusion, the research provides a future vision of the role of sustainable education in building resilient and prosperous communities and highlights the importance of investing in education as a key driver of sustainable development. This study contributes to the ongoing discussion on achieving lasting impact through sustainable community education and offers a practical framework for stakeholders to adopt and implement these strategies.Keywords: sustainable education, community education, Community engagement, local capacity building, educational technology
Procedia PDF Downloads 477414 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System
Authors: Mamta M. Barapatre, V. N. Sahare
Abstract:
Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept
Procedia PDF Downloads 2787413 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 97412 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 3427411 11-Round Impossible Differential Attack on Midori64
Authors: Zhan Chen, Wenquan Bi
Abstract:
This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori
Procedia PDF Downloads 2777410 Immigration Solutions for the United States
Authors: Philip Robert Alldritt
Abstract:
The continuing increase in human migration is at crisis levels in all areas of the planet. The causes are varied, and the risks are high for the migrants. Migration has been ongoing since the beginning of human emergence on the planet, but for the first time in our historic memory has the, migration reached this level of critical mass. The causes are many. Climate collapse, economic opportunity, drug cartel activity, political upheaval, and gang wars. Many locations are seemingly “within reach” of the migrants, and the push factors are so loaded with hopelessness that almost anyone would be willing to risk anything to improve their conditions. There is no argument about that mass migrations are occurring and will increase in the future. The solutions to this increase are complex. This paper will examine the causes of migration and attempt to provide some reasonable solutions to mitigate the migrations with equitable outcomes that may guide immigration policy in impacted areas.Keywords: immigration, crisis, climate, cartels
Procedia PDF Downloads 737409 Biological Significance of Long Intergenic Noncoding RNA LINC00273 in Lung Cancer Cell Metastasis
Authors: Ipsita Biswas, Arnab Sarkar, Ashikur Rahaman, Gopeswar Mukherjee, Subhrangsu Chatterjee, Shamee Bhattacharjee, Deba Prasad Mandal
Abstract:
One of the major reasons for the high mortality rate of lung cancer is the substantial delays in disease detection at late metastatic stages. It is of utmost importance to understand the detailed molecular signaling and detect the molecular markers that can be used for the early diagnosis of cancer. Several studies explored the emerging roles of long noncoding RNAs (lncRNAs) in various cancers as well as lung cancer. A long non-coding RNA LINC00273 was recently discovered to promote cancer cell migration and invasion, and its positive correlation with the pathological stages of metastasis may prove it to be a potential target for inhibiting cancer cell metastasis. Comparing real-time expression of LINC00273 in various human clinical cancer tissue samples with normal tissue samples revealed significantly higher expression in cancer tissues. This long intergenic noncoding RNA was found to be highly expressed in human liver tumor-initiating cells, human gastric adenocarcinoma AGS cell line, as well as human non-small cell lung cancer A549 cell line. SiRNA and shRNA-induced knockdown of LINC00273 in both in vitro and in vivo nude mice significantly subsided AGS and A549 cancer cell migration and invasion. LINC00273 knockdown also reduced TGF-β induced SNAIL, SLUG, VIMENTIN, ZEB1 expression, and metastasis in A549 cells. Plenty of reports have suggested the role of microRNAs of the miR200 family in reversing epithelial to mesenchymal transition (EMT) by inhibiting ZEB transcription factors. In this study, hsa-miR-200a-3p was predicted via IntaRNA-Freiburg RNA tools to be a potential target of LINC00273 with a negative free binding energy of −8.793 kcal/mol, and this interaction was verified as a confirmed target of LINC00273 by RNA pulldown, real-time PCR and luciferase assay. Mechanistically, LINC00273 accelerated TGF-β induced EMT by sponging hsa-miR-200a-3p which in turn liberated ZEB1 and promoted prometastatic functions in A549 cells in vitro as verified by real-time PCR and western blotting. The similar expression patterns of these EMT regulatory pathway molecules, viz. LINC00273, hsa-miR-200a-3p, ZEB1 and TGF-β, were also detected in various clinical samples like breast cancer tissues, oral cancer tissues, lung cancer tissues, etc. Overall, this LINC00273 mediated EMT regulatory signaling can serve as a potential therapeutic target for the prevention of lung cancer metastasis.Keywords: epithelial to mesenchymal transition, long noncoding RNA, microRNA, non-small-cell lung carcinoma
Procedia PDF Downloads 1567408 3D Electromagnetic Mapping of the Signal Strength in Long Term Evolution Technology in the Livestock Department of ESPOCH
Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres
Abstract:
This article focuses on the 3D electromagnetic mapping of the intensity of the signal received by a mobile antenna within the open areas of the Department of Livestock of the Escuela Superior Politecnica de Chimborazo (ESPOCH), located in the city of Riobamba, Ecuador. The transmitting antenna belongs to the mobile telephone company ”TUENTI”, and is analyzed in the 2 GHz bands, operating at a frequency of 1940 MHz, using Long Term Evolution (LTE). Power signal strength data in the area were measured empirically using the ”Network Cell Info” application. A total of 170 samples were collected, distributed in 19 concentric circles around the base station. 3 campaigns were carried out at the same time, with similar traffic, and average values were obtained at each point, which varies between -65.33 dBm to -101.67 dBm. Also, the two virtualization software used are Sketchup and Unreal. Finally, the virtualized environment was visualized through virtual reality using Oculus 3D glasses, where the power levels are displayed according to a range of powers.Keywords: reception power, LTE technology, virtualization, virtual reality, power levels
Procedia PDF Downloads 907407 Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3507406 Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂
Authors: O. Maximova, I. L. Danilovich, E. B. Deeva, K. Y. Bukhteev, A. A. Vorobyova, I. V. Morozov, O. S. Volkova, E. A. Zvereva, I. V. Solovyev, S. A. Nikolaev, D. Phuyal, M. Abdel-Hafiez, Y. C. Wang, J. Y. Lin, J. M. Chen, D. I. Gorbunov, K. Puzniak, B. Lake, A. N. Vasiliev
Abstract:
The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below TKeywords: chiral magnetic structures, low dimensional magnetic systems, umbrella-type ferrimagnets, chiral non-coplanar magnetic structures
Procedia PDF Downloads 1257405 Message Authentication Scheme for Vehicular Ad-Hoc Networks under Sparse RSUs Environment
Authors: Wen Shyong Hsieh, Chih Hsueh Lin
Abstract:
In this paper, we combine the concepts of chameleon hash function (CHF) and identification based cryptography (IBC) to build a message authentication environment for VANET under sparse RSUs. Based on the CHF, TA keeps two common secrets that will be embedded to all identities to be as the evidence of mutual trusting. TA will issue one original identity to every RSU and vehicle. An identity contains one public ID and one private key. The public ID, includes three components: pseudonym, random key, and public key, is used to present one entity and can be verified to be a legal one. The private key is used to claim the ownership of the public ID. Based on the concept of IBC, without any negotiating process, a CHF pairing key multiplied by one private key and other’s public key will be used for mutually trusting and to be utilized as the session key of secure communicating between RSUs and vehicles. To help the vehicles to do message authenticating, the RSUs are assigned to response the vehicle’s temple identity request using two short time secretes that are broadcasted by TA. To light the loading of request information, one day is divided into M time slots. At every time slot, TA will broadcast two short time secretes to all valid RSUs for that time slot. Any RSU can response the temple identity request from legal vehicles. With the collected announcement of public IDs from the neighbor vehicles, a vehicle can set up its neighboring set, which includes the information about the neighbor vehicle’s temple public ID and temple CHF pairing key that can be derived by the private key and neighbor’s public key and will be used to do message authenticating or secure communicating without the help of RSU.Keywords: Internet of Vehicles (IOV), Vehicular Ad-hoc Networks (VANETs), Chameleon Hash Function (CHF), message authentication
Procedia PDF Downloads 3917404 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique
Authors: Satyasen Panda, Urmila Bhanja
Abstract:
In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.Keywords: Cross Correlation (CC), Three dimensional Optical Code Division Multiple Access (3-D OCDMA), Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA), Multiple Access Interference (MAI), Phase Induced Intensity Noise (PIIN), Three Dimensional Modified Quadratic Congruence/Modified Prime (3-D MQC/MP) code
Procedia PDF Downloads 4127403 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 1327402 Managerial Advice-Seeking and Supply Chain Resilience: A Social Capital Perspective
Authors: Ethan Nikookar, Yalda Boroushaki, Larissa Statsenko, Jorge Ochoa Paniagua
Abstract:
Given the serious impact that supply chain disruptions can have on a firm's bottom-line performance, both industry and academia are interested in supply chain resilience, a capability of the supply chain that enables it to cope with disruptions. To date, much of the research has focused on the antecedents of supply chain resilience. This line of research has suggested various firm-level capabilities that are associated with greater supply chain resilience. A consensus has emerged among researchers that supply chain flexibility holds the greatest potential to create resilience. Supply chain flexibility achieves resilience by creating readiness to respond to disruptions with little cost and time by means of reconfiguring supply chain resources to mitigate the impacts of the disruption. Decisions related to supply chain disruptions are made by supply chain managers; however, the role played by supply chain managers' reference networks has been overlooked in the supply chain resilience literature. This study aims to understand the impact of supply chain managers on their firms' supply chain resilience. Drawing on social capital theory and social network theory, this paper proposes a conceptual model to explore the role of supply chain managers in developing the resilience of supply chains. Our model posits that higher level of supply chain managers' embeddedness in their reference network is associated with increased resilience of their firms' supply chain. A reference network includes individuals from whom supply chain managers seek advice on supply chain related matters. The relationships between supply chain managers' embeddedness in reference network and supply chain resilience are mediated by supply chain flexibility.Keywords: supply chain resilience, embeddedness, reference networks, social capitals
Procedia PDF Downloads 2287401 The Importance of Artificial Intelligence in Various Healthcare Applications
Authors: Joshna Rani S., Ahmadi Banu
Abstract:
Artificial Intelligence (AI) has a significant task to carry out in the medical care contributions of things to come. As AI, it is the essential capacity behind the advancement of accuracy medication, generally consented to be a painfully required development in care. Albeit early endeavors at giving analysis and treatment proposals have demonstrated testing, we anticipate that AI will at last dominate that area too. Given the quick propels in AI for imaging examination, it appears to be likely that most radiology, what's more, pathology pictures will be inspected eventually by a machine. Discourse and text acknowledgment are now utilized for assignments like patient correspondence and catch of clinical notes, and their utilization will increment. The best test to AI in these medical services areas isn't regardless of whether the innovations will be sufficiently skilled to be valuable, but instead guaranteeing their appropriation in day by day clinical practice. For far reaching selection to happen, AI frameworks should be affirmed by controllers, coordinated with EHR frameworks, normalized to an adequate degree that comparative items work likewise, instructed to clinicians, paid for by open or private payer associations, and refreshed over the long haul in the field. These difficulties will, at last, be survived, yet they will take any longer to do as such than it will take for the actual innovations to develop. Therefore, we hope to see restricted utilization of AI in clinical practice inside 5 years and more broad use inside 10 years. It likewise appears to be progressively evident that AI frameworks won't supplant human clinicians for a huge scope, yet rather will increase their endeavors to really focus on patients. Over the long haul, human clinicians may advance toward errands and work plans that draw on remarkably human abilities like sympathy, influence, and higher perspective mix. Maybe the lone medical services suppliers who will chance their professions over the long run might be the individuals who will not work close by AIKeywords: artificial intellogence, health care, breast cancer, AI applications
Procedia PDF Downloads 1817400 Sino-Russian Cooperation in the Arctic (Based on the Materials of the Russian Press)
Authors: Cui Long (Allen)
Abstract:
The role of the Arctic in world politics and international relations has increased significantly over the past decades. With its large natural resources, the Arctic region has important geopolitical, strategic, and economic significance. All this determines the interest in it not only of the Arctic states but also of states located far from the Arctic. One of these states is the People's Republic of China. Relations between China and Russia in recent decades have been built on the basis of strategic partnership. Joint projects in the Arctic have become the most important priority area of this partnership. These are projects in the transport and energy fields. A large number of works by Russian scientists are devoted to the Sino-Russian Arctic cooperation. Most authors consider cooperation as a guarantee of stability for China and Russia in a globalized world. However, there are authors who believe that there are separate contradictions in the relations between the Arctic and non-Arctic countries. In their opinion, China sometimes acts as a competitor, and its activities become expansionist. In general, according to the Russian authors, Sino-Russian cooperation is mutually beneficial and is under development. China and Russia have a long way to go in the issue of sustainable development of the Arctic.Keywords: People’s Republic of China, Russian Federation, Arctic, historiography
Procedia PDF Downloads 677399 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level
Authors: M. A. Spielmann, L. Schebek
Abstract:
In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level
Procedia PDF Downloads 2247398 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures
Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar
Abstract:
In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization
Procedia PDF Downloads 2097397 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model
Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo
Abstract:
In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.Keywords: climatic change, artificial neural networks, dorado fish, CPUE
Procedia PDF Downloads 2437396 The Impact Of Environmental Management System ISO 14001 Adoption on Firm Performance
Authors: Raymond Treacy, Paul Humphreys, Ronan McIvor, Trevor Cadden, Alan McKittrick
Abstract:
This study employed event study methodology to examine the role of institutions, resources and dynamic capabilities in the relationship between the Environmental Management System ISO 14001 adoption and firm performance. Utilising financial data from 140 ISO 14001 certified firms and 320 non-certified firms, the results of the study suggested that the UK and Irish manufacturers were not implementing ISO 14001 solely to gain legitimacy. In contrast, the results demonstrated that firms were fully integrating the ISO 14001 standard within their operations as certified firms were able to improve both financial and operating performance when compared to non-certified firms. However, while there were significant and long lasting improvements for employee productivity, manufacturing cost efficiency, return on assets and sales turnover, the sample firms operating cycle and fixed asset efficiency displayed evidence of diminishing returns in the long-run, underlying the observation that no operating advantage based on incremental improvements can be everlasting. Hence, there is an argument for investing in dynamic capabilities which help renew and refresh the resource base and help the firm adapt to changing environments. Indeed, the results of the regression analysis suggest that dynamic capabilities for innovation acted as a moderator in the relationship between ISO 14001 certification and firm performance. This, in turn, will have a significant and symbiotic influence on sustainability practices within the participating organisations. The study not only provides new and original insights, but demonstrates pragmatically how firms can take advantage of environmental management systems as a moderator to significantly enhance firm performance. However, while it was shown that firm innovation aided both short term and long term ROA performance, adaptive market capabilities only aided firms in the short-term at the marketing strategy deployment stage. Finally, the results have important implications for firms operating in an economic recession as the results suggest that firms should scale back investment in R&D while operating in an economic downturn. Conversely, under normal trading conditions, consistent and long term investments in R&D was found to moderate the relationship between ISO 14001 certification and firm performance. Hence, the results of the study have important implications for academics and management alike.Keywords: supply chain management, environmental management systems, quality management, sustainability, firm performance
Procedia PDF Downloads 3087395 Public Debt and Fiscal Stability in Nigeria
Authors: Abdulkarim Yusuf
Abstract:
Motivation: The Nigerian economy has seen significant macroeconomic instability, fuelled mostly by an overreliance on fluctuating oil revenues. The rising disparity between tax receipts and government spending in Nigeria necessitates government borrowing to fund the anticipated pace of economic growth. Rising public debt and fiscal sustainability are limiting the government's ability to invest in key infrastructure that promotes private investment and growth in Nigeria. Objective: This paper fills an empirical research vacuum by examining the impact of public debt on fiscal sustainability in Nigeria, given the significance of fiscal stability in decreasing poverty and the constraints that an unsustainable debt burden imposes on it. Data and method: Annual time series data covering the period 1980 to 2022 exposed to conventional and structural breaks stationarity tests and the Autoregressive Distributed Lag estimation approach were adopted for this study. Results: The results reveal that domestic debt stock, debt service payment, foreign reserve stock, exchange rate, and private investment all had a major adverse effect on fiscal stability in the long and short run, corroborating the debt overhang and crowding-out hypothesis. External debt stock, prime lending rate, and degree of trade openness, which boosted fiscal stability in the long run, had a major detrimental effect on fiscal stability in the short run, whereas foreign direct investment inflows had an important beneficial impact on fiscal stability in both the long and short run. Implications: The results indicate that fiscal measures that inspire domestic resource mobilization, sustainable debt management techniques, and dependence on external debt to boost deficit financing will improve fiscal stability and drive growth.Keywords: ARDL co-integration, debt overhang, debt servicing, fiscal stability, public debt
Procedia PDF Downloads 577394 Tunable in Phase, out of Phase and T/4 Square-Wave Pulses in Delay-Coupled Optoelectronic Oscillators
Authors: Jade Martínez-Llinàs, Pere Colet
Abstract:
By exploring the possible dynamical regimes in a prototypical model for mutually delay-coupled OEOs, here it is shown that two mutually coupled non-identical OEOs, besides in- and out-of-phase square-waves, can generate stable square-wave pulses synchronized at a quarter of the period (T/4) in a broad parameter region. The key point to obtain T/4 solutions is that the two OEO operate with mixed feedback, namely with negative feedback in one and positive in the other. Furthermore, the coexistence of multiple solutions provides a large degree of flexibility for tuning the frequency in the GHz range without changing any parameter. As a result the two coupled OEOs system is good candidate to be implemented for information encoding as a high-capacity memory device.Keywords: nonlinear optics, optoelectronic oscillators, square waves, synchronization
Procedia PDF Downloads 3707393 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1247392 The Effectiveness of Incidental Physical Activity Interventions Compared to Other Interventions in the Management of People with Low Back Pain: A Systematic Review and Meta-Analysis
Authors: Hosam Alzahrani, Martin Mackey, Emmanuel Stamatakis, Marina B. Pinheiro, Manuela Wicks, Debra Shirley
Abstract:
Objective: To investigate the effectiveness of incidental (non-structured) physical activity interventions compared with other commonly prescribed interventions for the management of people with low back pain (LBP). Methods: We performed a systematic review with meta-analyses of eligible randomized controlled trials obtained by searching Medline, Scopus, CINAHL, EMBASE, and CENTRAL. This review considered trials investigating the effect of incidental physical activity interventions compared to other interventions in people aged 18 years or over, diagnosed with non-specific LBP. Analyses were conducted separately for short-term (≤3 months), intermediate-term (> 3 and < 12 months), and long-term (≥ 12 months), for each outcome. The analyses were conducted using the weighted mean difference (WMD). The overall quality of evidence was assessed using the GRADE system. Meta-analyses were only performed for pain and disability outcomes as there was insufficient data on the other outcomes. Results: For pain, the pooled results did not show any significant effects between the incidental physical activity intervention and other interventions at any time point. For disability, incidental physical activity was not statistically more effective than other interventions at short-term; however, the pooled results favored incidental physical activity at intermediate-term (WMD= -6.05, 95% CI: -10.39 to -1.71, p=0.006) and long-term (WMD= -6.40 95% CI: -11.68 to -1.12, p=0.02) follow-ups among participants with chronic LBP. The overall quality of evidence was rated “moderate quality” based on the GRADE system. Conclusion: The incidental physical activity intervention provided intermediate and long disability relief for people with chronic LBP, although this improvement was small and not likely to be clinically important.Keywords: physical activity, incidental, low back pain, systematic review, meta-analysis
Procedia PDF Downloads 1577391 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1697390 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 3127389 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 267388 A Comparison of Short- and Long-Haul Vacation Tourists on Evaluation of Attractiveness: The Case of Hong Kong
Authors: Zhaoyu Chen
Abstract:
In this study, an attempt was made to find reasons why tourists go to particular attractions. Tourists may be either motivated by the attractions or simply make the choice to satisfy their needs and desires. Based on the attractions in Hong Kong, this research was conducted to explore the attraction-related concepts to discuss how the attraction system works. Due to the limited studies on exploring the attractiveness of attractions through tourist movement patterns, the study aims to evaluate such indicators to determine whether tourists are motivated by attractiveness or their own needs. The investigation is conducted through the comparison of different source markets - Mainland China, short haul markets (excluding Mainland China) and long haul markets. The latest finding of Departing Visitor Survey (DVS) implemented by the Hong Kong Tourism Board (HKTB) is employed for the analysis. Various tourist movement patterns are drawn from the practical data. The managerial implication to destination management organizations (DMOs) is suggested to better allocate attractions according to the needs of tourists.Keywords: attractions, attraction system, Hong Kong, tourist movement patterns
Procedia PDF Downloads 5157387 First Order Reversal Curve Method for Characterization of Magnetic Nanostructures
Authors: Bashara Want
Abstract:
One of the key factors limiting the performance of magnetic memory is that the coercivity has a distribution with finite width, and the reversal starts at the weakest link in the distribution. So one must first know the distribution of coercivities in order to learn how to reduce the width of distribution and increase the coercivity field to obtain a system with narrow width. First Order Reversal Curve (FORC) method characterizes a system with hysteresis via the distribution of local coercivities and, in addition, the local interaction field. The method is more versatile than usual conventional major hysteresis loops that give only the statistical behaviour of the magnetic system. The FORC method will be presented and discussed at the conference.Keywords: magnetic materials, hysteresis, first-order reversal curve method, nanostructures
Procedia PDF Downloads 82