Search results for: Alpin agricultural landscapes
77 Impact of Wastewater Irrigation on Soil Quality and Productivity of Tuberose (Polianthes tuberosa L. cv. Prajwal)
Authors: D. S. Gurjar, R. Kaur, K. P. Singh, R. Singh
Abstract:
A greater volume of wastewater generate from urban areas in India. Due to the adequate availability, less energy requirement and nutrient richness, farmers of urban and peri-urban areas are deliberately using wastewater to grow high value vegetable crops. Wastewater contains pathogens and toxic pollutants, which can enter in the food chain system while using wastewater for irrigating vegetable crops. Hence, wastewater can use for growing commercial flower crops that may avoid food chain contamination. Tuberose (Polianthes tuberosa L.) is one of the most important commercially grown, cultivated over 30, 000 ha area, flower crop in India. Its popularity is mainly due to the sweet fragrance as well as the long keeping quality of the flower spikes. The flower spikes of tuberose has high market price and usually blooms during summer and rainy seasons when there is meager supply of other flowers in the market. It has high irrigation water requirement and fresh water supply is inadequate in tuberose growing areas of India. Therefore, wastewater may fulfill the water and nutrients requirements and may enhance the productivity of tuberose. Keeping in view, the present study was carried out at WTC farm of ICAR-Indian Agricultural Research Institute, New Delhi in 2014-15. Prajwal was the variety of test crop. The seven treatments were taken as T-1. Wastewater irrigation at 0.6 ID/CPE, T-2: Wastewater irrigation at 0.8 ID/CPE, T-3: Wastewater irrigation at 1.0 ID/CPE, T-4: Wastewater irrigation at 1.2 ID/CPE, T-5: Wastewater irrigation at 1.4 ID/CPE, T-6: Conjunctive use of Groundwater and Wastewater irrigation at 1.0 ID/CPE in cyclic mode, T-7: Control (Groundwater irrigation at 1.0 ID/CPE) in randomized block design with three replication. Wastewater and groundwater samples were collected on monthly basis (April 2014 to March 2015) and analyzed for different parameters of irrigation quality (pH, EC, SAR, RSC), pollution hazard (BOD, toxic heavy metals and Faecal coliforms) and nutrients potential (N, P, K, Cu, Fe, Mn, Zn) as per standard methods. After harvest of tuberose crop, soil samples were also collected and analyzed for different parameters of soil quality as per standard methods. The vegetative growth and flower parameters were recorded at flowering stage of tuberose plants. Results indicated that wastewater samples had higher nutrient potential, pollution hazard as compared to groundwater used in experimental crop. Soil quality parameters such as pH EC, available phosphorous & potassium and heavy metals (Cu, Fe, Mn, Zn, Cd. Pb, Ni, Cr, Co, As) were not significantly changed whereas organic carbon and available nitrogen were significant higher in the treatments where wastewater irrigations were given at 1.2 and 1.4 ID/CPE as compared to groundwater irrigations. Significantly higher plant height (68.47 cm), leaves per plant (78.35), spike length (99.93 cm), rachis length (37.40 cm), numbers of florets per spike (56.53), cut spike yield (0.93 lakh/ha) and loose flower yield (8.5 t/ha) were observed in the treatment of Wastewater irrigation at 1.2 ID/CPE. Study concluded that given quality of wastewater improves the productivity of tuberose without an adverse impact on soil quality/health. However, its long term impacts need to be further evaluated.Keywords: conjunctive use, irrigation, tuberose, wastewater
Procedia PDF Downloads 33176 Assessment of Energy Efficiency and Life Cycle Greenhouse Gas Emission of Wheat Production on Conservation Agriculture to Achieve Soil Carbon Footprint in Bangladesh
Authors: MD Mashiur Rahman, Muhammad Arshadul Haque
Abstract:
Emerging conservation agriculture (CA) is an option for improving soil health and maintaining environmental sustainability for intensive agriculture, especially in the tropical climate. Three years lengthy research experiment was performed in arid climate from 2018 to 2020 at research field of Bangladesh Agricultural Research Station (RARS)F, Jamalpur (soil texture belongs to Agro-Ecological Zone (AEZ)-8/9, 24˚56'11''N latitude and 89˚55'54''E longitude and an altitude of 16.46m) to evaluate the effect of CA approaches on energy use efficiency and a streamlined life cycle greenhouse gas (GHG) emission of wheat production. For this, the conservation tillage practices (strip tillage (ST) and minimum tillage (MT)) were adopted in comparison to the conventional farmers' tillage (CT), with retained a fixed level (30 cm) of residue retention. This study examined the relationship between energy consumption and life cycle greenhouse gas (GHG) emission of wheat cultivation in Jamalpur region of Bangladesh. Standard energy equivalents megajoules (MJ) were used to measure energy from different inputs and output, similarly, the global warming potential values for the 100-year timescale and a standard unit kilogram of carbon dioxide equivalent (kg CO₂eq) was used to estimate direct and indirect GHG emissions from the use of on-farm and off-farm inputs. Farm efficiency analysis tool (FEAT) was used to analyze GHG emission and its intensity. A non-parametric data envelopment (DEA) analysis was used to estimate the optimum energy requirement of wheat production. The results showed that the treatment combination having MT with optimum energy inputs is the best suit for cost-effective, sustainable CA practice in wheat cultivation without compromising with the yield during the dry season. A total of 22045.86 MJ ha⁻¹, 22158.82 MJ ha⁻¹, and 23656.63 MJ ha⁻¹ input energy for the practice of ST, MT, and CT was used in wheat production, and output energy was calculated as 158657.40 MJ ha⁻¹, 162070.55 MJ ha⁻¹, and 149501.58 MJ ha⁻¹, respectively; where energy use efficiency/net energy ratio was found to be 7.20, 7.31 and 6.32. Among these, MT is the most effective practice option taken into account in the wheat production process. The optimum energy requirement was found to be 18236.71 MJ ha⁻¹ demonstrating for the practice of MT that if recommendations are followed, 18.7% of input energy can be saved. The total greenhouse gas (GHG) emission was calculated to be 2288 kgCO₂eq ha⁻¹, 2293 kgCO₂eq ha⁻¹ and 2331 kgCO₂eq ha⁻¹, where GHG intensity is the ratio of kg CO₂eq emission per MJ of output energy produced was estimated to be 0.014 kg CO₂/MJ, 0.014 kg CO₂/MJ and 0.015 kg CO₂/MJ in wheat production. Therefore, CA approaches ST practice with 30 cm residue retention was the most effective GHG mitigation option when the net life cycle GHG emission was considered in wheat production in the silt clay loam soil of Bangladesh. In conclusion, the CA approaches being implemented for wheat production involving MT practice have the potential to mitigate global warming potential in Bangladesh to achieve soil carbon footprint, where the life cycle assessment approach needs to be applied to a more diverse range of wheat-based cropping systems.Keywords: conservation agriculture and tillage, energy use efficiency, life cycle GHG, Bangladesh
Procedia PDF Downloads 10275 Assessment of Environmental Impact for Rice Mills in Burdwan District: Special Emphasis on Groundwater, Surface Water, Soil, Vegetation and Human Health
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay
Abstract:
Rice milling is an important activity in agricultural economy of India, particularly the Burdwan district. However, the environmental impact of rice mills is frequently underestimated. The environmental impact of rice mills in the Burdwan district is a major source of concern, given the importance of rice milling in the local economy and food supply. In the Burdwan district, more than fifty (50) rice mills are in operation. The goal of this study is to investigate the effects of rice mills on several environmental components, with a particular emphasis on groundwater, surface water, soil, and vegetation. The research comprises a thorough review of numerous rice mills located around the district, utilising both qualitative and quantitative approaches. Water samples taken from wells near rice mills will be tested for groundwater quality, with an emphasis on factors such as heavy metal pollution and pollutant concentrations. Monitoring rice mill discharge into neighbouring bodies of water and studying the potential impact on aquatic ecosystems will be part of surface water evaluations. Furthermore, soil samples from the surrounding areas will be taken to examine changes in soil characteristics, nutrient content, and potential contamination from milling waste disposal. Vegetation studies will be conducted to investigate the effects of emissions and effluents on plant health and biodiversity in the region. The findings will provide light on the extent of environmental degradation caused by rice mills in the Burdwan district, as well as valuable insight into the effects of such operations on water, soil, and vegetation. The findings will aid in the development of appropriate legislation and regulations to reduce negative environmental repercussions and promote sustainable practises in the rice milling business. In some cases, heavy metals have been related to health problems. Heavy metals (As, Cd, Cu, Pb, Cr, Hg) are linked to skin, lung, brain, kidney, liver, metabolic, spleen, cardiovascular, haematological, immunological, gastrointestinal, testes, pancreatic, metabolic, and bone problems. As a result, this study contributes to a better knowledge of industrial environmental impacts and establishes the framework for future studies aimed at developing a more ecologically balanced and resilient Burdwan district. The following recommendations are offered for reducing the rice mill's environmental impact: To keep untreated effluents out of bodies of water, adequate waste management systems must be established. Use environmentally friendly rice milling processes to reduce pollution. To avoid soil pollution, rice mill by-products should be used as fertiliser in a controlled and appropriate manner. Groundwater, surface water, soil, and vegetation are all regularly monitored in order to study and adapt to environmental changes. By adhering to these principles, the rice milling industry of Burdwan district may achieve long-term growth while lowering its environmental effect and safeguarding the environment for future generations.Keywords: groundwater, environmental analysis, biodiversity, rice mill, waste management, diseases, industrial impact
Procedia PDF Downloads 9574 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations
Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino
Abstract:
Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.Keywords: air emissions, baseline, green house gases, shale gas
Procedia PDF Downloads 33073 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 26572 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model
Authors: Muhammad Karim Ahmadzai
Abstract:
Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis
Procedia PDF Downloads 11771 The Temporal Pattern of Bumble Bees in Plant Visiting
Authors: Zahra Shakoori, Farid Salmanpour
Abstract:
Pollination services are a vital service for the ecosystem to maintain environmental stability. The decline of pollinators can disrupt the ecological balance by affecting components of biodiversity. Bumble bees are crucial pollinators, playing a vital role in maintaining plant diversity. This study investigated the temporal patterns of their visitation to flowers in Kiasar National Park, Iran. Observations were conducted in Jun 2024, totaling 442 person-minutes of observation. Five species of bumble bees were identified. The study revealed that they consistently visited an average of 12-15 flowers per minute, regardless of species. The findings highlight the importance of protecting natural habitats, where their populations are thriving in the absence of human-induced stressors. This study was conducted in Kiasar National Park, located in the southeast of Mazandaran, northern Iran. The surveyed area, at an altitude of 1800-2200 meters, includes both forest and pasture. Bumble bee surveys were carried out on sunny days from June 2024, starting at dawn and ending at sunset. To avoid double-counting, we systematically searched for foraging habitats on low-sloping ridges with high mud density, frequently moving between patches. We recorded bumble bee visits to flowers and plant species per minute using direct observation, a stopwatch, and a pre-prepared form. We used statistical analysis of variance (ANOVA) with a confidence level of 95% to examine potential differences in foraging rates across different bumble bee species, flowers, plant bases, and plant species visited. Bumble bee identification relied on morphological indicators. A total of 442 person-minutes of bumble bee observations were recorded. Five species of bumble bees (Bombus fragrans, Bombus haematurus, Bombus lucorum, Bombus melanurus, Bombus terrestris) were identified during the study. The results of this study showed that the visits of bumble bees to flower sources were not different from each other. In general, bumble bees visit an average of 12-15 flowers every 60 seconds. In addition, at the same time they visit between 3-5 plant bases. Finally, they visit an average of 1 to 3 plant species per minute. While many taxa contribute to pollination, insects—especially bees—are crucial for maintaining plant diversity and ecosystem functions. As plant diversity increases, the stopping rate of pollinating insects rises, which reduces their foraging activity. Bumble bees, therefore, stop more frequently in natural areas than in agricultural fields due to higher plant diversity. Our findings emphasize the need to protect natural habitats like Kiasar National Park, where bumble bees thrive without human-induced stressors like pesticides, livestock grazing, and pollution. With bumble bee populations declining globally, further research is essential to understand their behavior in different environments and develop effective conservation strategies to protect them.Keywords: bumble bees, pollination, pollinator, plant diversity, Iran
Procedia PDF Downloads 2870 Concentration and Stability of Fatty Acids and Ammonium in the Samples from Mesophilic Anaerobic Digestion
Authors: Mari Jaakkola, Jasmiina Haverinen, Tiina Tolonen, Vesa Virtanen
Abstract:
These process monitoring of biogas plant gives valuable information of the function of the process and help to maintain a stable process. The costs of basic monitoring are often much lower than the costs associated with re-establishing a biologically destabilised plant. Reactor acidification through reactor overload is one of the most common reasons for process deterioration in anaerobic digesters. This occurs because of a build-up of volatile fatty acids (VFAs) produced by acidogenic and acetogenic bacteria. VFAs cause pH values to decrease, and result in toxic conditions in the reactor. Ammonia ensures an adequate supply of nitrogen as a nutrient substance for anaerobic biomass and increases system's buffer capacity, counteracting acidification lead by VFA production. However, elevated ammonia concentration is detrimental to the process due to its toxic effect. VFAs are considered the most reliable analytes for process monitoring. To obtain accurate results, sample storage and transportation need to be carefully controlled. This may be a challenge for off-line laboratory analyses especially when the plant is located far away from the laboratory. The aim of this study was to investigate the correlation between fatty acids, ammonium, and bacteria in the anaerobic digestion samples obtained from an industrial biogas factory. The stability of the analytes was studied comparing the results of the on-site analyses performed in the factory site to the results of the samples stored at room temperature and -18°C (up to 30 days) after sampling. Samples were collected in the biogas plant consisting of three separate mesofilic AD reactors (4000 m³ each) where the main feedstock was swine slurry together with a complex mixture of agricultural plant and animal wastes. Individual VFAs, ammonium, and nutrients (K, Ca, Mg) were studied by capillary electrophoresis (CE). Longer chain fatty acids (oleic, hexadecanoic, and stearic acids) and bacterial profiles were studied by GC-MSD (Gas Chromatography-Mass Selective Detector) and 16S rDNA, respectively. On-site monitoring of the analytes was performed by CE. The main VFA in all samples was acetic acid. However, in one reactor sample elevated levels of several individual VFAs and long chain fatty acids were detected. Also bacterial profile of this sample differed from the profiles of other samples. Acetic acid decomposed fast when the sample was stored in a room temperature. All analytes were stable when stored in a freezer. Ammonium was stable even at a room temperature for the whole testing period. One reactor sample had higher concentration of VFAs and long chain fatty acids than other samples. CE was utilized successfully in the on-site analysis of separate VFAs and NH₄ in the biogas production site. Samples should be analysed in the sampling day if stored in RT or freezed for longer storage time. Fermentation reject can be stored (and transported) at ambient temperature at least for one month without loss of NH₄. This gives flexibility to the logistic solutions when reject is used as a fertilizer.Keywords: anaerobic digestion, capillary electrophoresis, ammonium, bacteria
Procedia PDF Downloads 16869 Identifying Apis millefera Strains in Akkar District (North Lebanon) Using Mitochondrial DNA: A Step in Preserving the Local Strain A. m. Syriaca
Authors: Zeina Nasr, Bashar Merheb
Abstract:
The honey bee is a social insect that had driven the human interest much more than any other organism. Beekeeping practices dated the appearance of Man on earth and now it provides a hobby or a secondary work that contributes to the family revenue and requires a little time engagement and money investment. Honey production is not the only contribution of honey bees to the economy, since honey bees play an important role in the pollination. Bee keeping in Lebanon is an important part of the agricultural economy. However, a growing concern about bees is spreading globally, due to an accelerated decline of bees colonies. This raises the alert to preserve and protect local bee strains against uncontrolled introduction of foreign strains and invasive parasitic species. Mitochondrial DNA (mtDNA) markers are commonly used in studying genetic variation in the Apis mellifera species. The DraI-COI-COII test is based on the analysis of the intergenic region between the two genes COI and COII. The different honey bee strains differ in the presence or absence of the p sequence and the number of Q sequences present. A. m. syriaca belonging to the lineage Z, is the native honey bee subspecies in Lebanon, Syria, Jordan, and Palestine. A. m. syriaca is known for its high defensiveness, even though it has many important advantages. However, commercial breeder strains, such as the Italian (A. m. ligustica), and Carniolan (A. m. carnica) strains, have been introduced by beekeepers and regularly used for honey production. This raises worries about the disappearance of the local subspecies. It is obvious that identifying A. m. syriaca colonies and protecting them against uncontrolled mating with other bee strains is a crucial step to protect and improve the original local strain. This study aims to reveal the existing sub-species of honey bee in Akkar – Lebanon and to assess the influence of introgression on the hybridization of the local strain. This will help to identify areas of pure A.m. syriaca population over this district to be considered in choosing syriaca reserves. We collected samples of bees from different regions of Akkar district in order to perform mtDNA analysis. We determined the restriction fragments length of the intergenic region COI-COII, using the restriction enzyme DraI. The results showed both the C and the Z lineages. Four restriction patterns were identified among the restriction maps of the studied samples. The most abundant mitochondrial lineage is the Z lineage constituting about 60% of the identified samples. Al-Dreib region reported the lowest introgression with foreign mtDNA of 21% making it the most suitable area for a genetic reserve of syriaca in Akkar based on its lowest introgression and suitable environment in addition to the attitude of local beekeepers to conserve the local strain. Finally, this study is the first step in constructing conservation programs for the preservation of the local strain and should be generalized to the whole Lebanese population, consistent with the effort done in neighboring countries.Keywords: Akkar Lebanon, Apis millefera syriaca, DraI-COI-COII test, mitochondrial DNA
Procedia PDF Downloads 27668 Effects of Temperature and Mechanical Abrasion on Microplastics
Authors: N. Singh, G. K. Darbha
Abstract:
Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering
Procedia PDF Downloads 17067 Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project
Authors: David L. Knott, Robert Kingsland, Alistair Hitchon
Abstract:
The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past.Keywords: downhole investigation techniques, drilling, mine subsidence, yard seam
Procedia PDF Downloads 31466 Sustainable Urbanism: Model for Social Equity through Sustainable Development
Authors: Ruchira Das
Abstract:
The major Metropolises of India are resultant of Colonial manifestation of Production, Consumption and Sustenance. These cities grew, survived, and sustained on the basic whims of Colonial Power and Administrative Agendas. They were symbols of power, authority and administration. Within them some Colonial Towns remained as small towns within the close vicinity of the major metropolises and functioned as self–sufficient units until peripheral development due to tremendous pressure occurred in the metropolises. After independence huge expansion in Judiciary and Administration system resulted City Oriented Employment. A large number of people started residing within the city or within commutable distance of the city and it accelerated expansion of the cities. Since then Budgetary and Planning expenditure brought a new pace in Economic Activities. Investment in Industry and Agriculture sector generated opportunity of employment which further led towards urbanization. After two decades of Budgetary and Planning economic activities in India, a new era started in metropolitan expansion. Four major metropolises started further expansion rapidly towards its suburbs. A concept of large Metropolitan Area developed. Cities became nucleus of suburbs and rural areas. In most of the cases such expansion was not favorable to the relationship between City and its hinterland due to absence of visualization of Compact Sustainable Development. The search for solutions needs to weigh the choices between Rural and Urban based development initiatives. Policymakers need to focus on areas which will give the greatest impact. The impact of development initiatives will spread the significant benefit to all. There is an assumption that development integrates Economic, Social and Environmental considerations with equal weighing. The traditional narrower and almost exclusive focus on economic criteria as the determinant of the level of development is thus re–described and expanded. The Social and Environmental aspects are equally important as Economic aspect to achieve Sustainable Development. The arrangement of opportunities for Public, Semi – Public facilities for its citizen is very much relevant to development. It is responsibility of the administration to provide opportunities for the basic requirement of its inhabitants. Development should be in terms of both Industrial and Agricultural to maintain a balance between city and its hinterland. Thus, policy is to formulate shifting the emphasis away from Economic growth towards Sustainable Human Development. The goal of Policymaker should aim at creating environments in which people’s capabilities can be enhanced by the effective dynamic and adaptable policy. The poverty could not be eradicated simply by increasing income. The improvement of the condition of the people would have to lead to an expansion of basic human capabilities. In this scenario the suburbs/rural areas are considered as environmental burden to the metropolises. A new living has to be encouraged in the suburban or rural. We tend to segregate agriculture from the city and city life, this leads to over consumption, but this urbanism model attempts both these to co–exists and hence create an interesting overlapping of production and consumption network towards sustainable Rurbanism.Keywords: socio–economic progress, sustainability, social equity, urbanism
Procedia PDF Downloads 30665 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT
Procedia PDF Downloads 27664 Transforming Challenges of Urban and Peri-Urban Agriculture into Opportunities for Urban Food Security in India
Authors: G. Kiran Kumar, K. Padmaja
Abstract:
The rise of urban and peri-urban agriculture (UPA) is an important urban phenomenon that needs to be well understood before we pronounce a verdict whether it is beneficial or not. The challenge of supply of safe and nutritious food is faced by urban inhabitants. The definition of urban and peri-urban varies from city to city depending on the local policies framed with a view to bring regulated urban habitations as part of governance. Expansion of cities and the blurring of boundaries between urban and rural areas make it difficult to define peri-urban agriculture. The problem is further exacerbated by the fact that definition adopted in one region may not fit in the other. On the other hand the proportion of urban population is on the rise vis-à-vis rural. The rise of UPA does not promise that the food requirements of cities can be entirely met from this practice, since availability of enormous amounts of spaces on rooftops and vacant plots is impossible for raising crops. However, UPA reduces impact of price volatility, particularly for vegetables, which relatively have a longer shelf life. UPA improves access to fresh, nutritious and safe food for the urban poor. UPA provides employment to food handlers and traders in the supply chain. UPA can pose environmental and health risks from inappropriate agricultural practices; increased competition for land, water and energy; alter the ecological landscape and make it vulnerable to increased pollution. The present work is based on case studies in peri-urban agriculture in Hyderabad, India and relies on secondary data. This paper tries to analyze the need for more intensive production technologies without affecting the environment. An optimal solution in terms of urban-rural linkages has to be devised. There is a need to develop a spatial vision and integrate UPA in urban planning in a harmonious manner. Zoning of peri-urban areas for agriculture, milk and poultry production is an essential step to preserve the traditional nurturing character of these areas. Urban local bodies in conjunction with Departments of Agriculture and Horticulture can provide uplift to existing UPA models, without which the UPA can develop into a haphazard phenomenon and add to the increasing list of urban challenges. Land to be diverted for peri-urban agriculture may render the concept of urban and peri-urban forestry ineffective. This paper suggests that UPA may be practiced for high value vegetables which can be cultivated under protected conditions and are better resilient to climate change. UPA can provide models for climate resilient agriculture in urban areas which can be replicated in rural areas. Production of organic farm produce is another option for promote UPA owing to the proximity to informed consumers and access to markets within close range. Waste lands in peri-urban areas can be allotted to unemployed rural youth with the support of Urban Local Bodies (ULBs) and used for UPA. This can serve the purposes of putting wastelands to food production, enhancing employment opportunities and enhancing access to fresh produce for urban consumers.Keywords: environment, food security, urban and peri-urban agriculture, zoning
Procedia PDF Downloads 31963 Establishments of an Efficient Platform for Genome Editing in Grapevine
Authors: S. Najafi, E. Bertini, M. Pezzotti, G.B. Tornielli, S. Zenoni
Abstract:
Grapevine is an important agricultural fruit crop plant consumed worldwide and with a key role in the global economy. Grapevine is strongly affected by both biotic and abiotic stresses, which impact grape growth at different stages, such as during plant and berry development and pre- and post-harvest, consequently causing significant economic losses. Recently global warming has propelled the anticipation of the onset of berry ripening, determining the reduction of a grape color and increased volatilization of aroma compounds. Climate change could negatively alter the physiological characteristics of the grape and affect the berry and wine quality. Modern plant breeding can provide tools such as genome editing for improving grape resilience traits while maintaining intact the viticultural and oenological quality characteristics of the genotype. This study aims at developing a platform for genome editing application in grapevine plants with the final goal to improve berry quality, biotic, and abiotic resilience traits. We chose to directly deliver ribonucleoproteins (RNP, preassembled Cas protein and guide RNA) into plant protoplasts, and, from these cell structures, regenerate grapevine plants edited in specific selected genes controlling traits of interest. Edited plants regenerated by somatic embryogenesis from protoplasts will then be sequenced and molecularly characterized. Embryogenic calli of Sultana and Shiraz cultivars were initiated from unopened leaves of in-vitro shoot tip cultures and from stamens, respectively. Leaves were placed on NB2 medium while stamens on callus initiation medium (PIV) medium and incubated in the dark at 28 °C for three months. Viable protoplasts, tested by FDA staining, isolated from embryogenic calli were cultured by disc method at 1*105 protoplasts/ml. Mature well-shaped somatic embryos developed directly in the protoplast culture medium two months later and were transferred in the light into to shooting medium for further growth. Regenerated plants were then transferred to the greenhouse; no phenotypic alterations were observed when compared to non in-vitro cultured plants. The performed experiments allowed to established an efficient protocol of embryogenic calli production, protoplast isolation, and regeneration of the whole plant through somatic embryogenesis in both Sultana and Shiraz. Regenerated plants, through direct somatic embryogenesis deriving from a single cell, avoid the risk of chimerism during the regeneration process, therefore improving the genome editing process. As pre-requisite of genome editing, an efficient method for transfection of protoplast by yellow fluorescent protein (YFP) marker genes was also established and experiments of direct delivery of CRISPR–Cas9 ribonucleoproteins (RNPs) in protoplasts to achieve efficient DNA-free targeted mutations are in progress.Keywords: CRISPR-cas9, plant regeneration, protoplast isolation, Vitis vinifera
Procedia PDF Downloads 15062 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 5461 Prevalence of Occupational Asthma Diagnosed by Specific Challenge Test in 5 Different Working Environments in Thailand
Authors: Sawang Saenghirunvattana, Chao Saenghirunvattana, Maria Christina Gonzales, Wilai Srimuk, Chitchamai Siangpro, Kritsana Sutthisri
Abstract:
Introduction: Thailand is one of the fastest growing countries in Asia. It has emerged from agricultural to industrialized economy. Work places have shifted from farms to factories, offices and streets were employees are exposed to certain chemicals and pollutants causing occupational diseases particularly asthma. Work-related diseases are major concern and many studies have been published to demonstrate certain professions and their exposures that elevate the risk of asthma. Workers who exhibit coughing, wheezing and difficulty of breathing are brought to a health care setting where Pulmonary Function Test (PFT) is performed and based from results, they are then diagnosed of asthma. These patients, known to have occupational asthma eventually get well when removed from the exposure of the environment. Our study, focused on performing PFT or specific challenge test in diagnosing workers of occupational asthma with them executing the test within their workplace, maintaining the environment and their daily exposure to certain levels of chemicals and pollutants. This has provided us with an understanding and reliable diagnosis of occupational asthma. Objective: To identify the prevalence of Thai workers who develop asthma caused by exposure to pollutants and chemicals from their working environment by conducting interview and performing PFT or specific challenge test in their work places. Materials and Methods: This study was performed from January-March 2015 in Bangkok, Thailand. The percentage of abnormal symptoms of 940 workers in 5 different areas (factories of plastic, fertilizer, animal food, office and streets) were collected through a questionnaire. The demographic information, occupational history, and the state of health were determined using a questionnaire and checklists. PFT was executed in their work places and results were measured and evaluated. Results: Pulmonary Function test was performed by 940 participants. The specific challenge test was done in factories of plastic, fertilizer, animal food, office environment and on the streets of Thailand. Of the 100 participants working in the plastic industry, 65% complained of having respiratory symptoms. None of them had an abnormal PFT. From the participants who worked with fertilizers and are exposed to sulfur dioxide, out of 200 participants, 20% complained of having symptoms and 8% had abnormal PFT. The 300 subjects working with animal food reported that 45% complained of respiratory symptoms and 15% had abnormal PFT results. From the office environment where there is indoor pollution, Out of 140 subjects, 7% had symptoms and 4% had abnormal PFT. The 200 workers exposed to traffic pollution, 24% reported respiratory symptoms and 12% had abnormal PFT. Conclusion: We were able to identify and diagnose participants of occupational asthma through their abnormal lung function test done at their work places. The chemical agents and exposures were determined therefore effective management of workers with occupational asthma were advised to avoid further exposure for better chances of recovery. Further studies identifying the risk factors and causative agents of asthma in workplaces should be developed to encourage interventional strategies and programs that will prevent occupation related diseases particularly asthma.Keywords: occupational asthma, pulmonary function test, specific challenge test, Thailand
Procedia PDF Downloads 30460 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass
Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García
Abstract:
The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass
Procedia PDF Downloads 23559 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria
Authors: K. Bencherif, M. Bellifa
Abstract:
The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen
Procedia PDF Downloads 38958 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh
Authors: Mohsina Aktar, Bishawjit Mallick
Abstract:
Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.Keywords: wetland community, hydroponics, climate change adaptation, livelihood
Procedia PDF Downloads 27457 Local Governance Systems for Value Chains' Promotion: A Chance for Rural Development in Tunisia
Authors: Neil Fourati
Abstract:
Collaboration between public and private stakeholders for agricultural development are today lacking in Tunisia. The last dictatorship witnessed by the country has deteriorated the necessary trust between the state and small farmers for the realization of development projects, in particular in the interior, disadvantaged regions of the country. These regions, where the youth unemployment rate is above 30%, have been the heart of the uprising that preceded the revolution. The transitional period that the country is going through since 2011 is an opportunity for the emergence of new governance systems in the context of the decentralization. The latter is recognized in the 2nd Tunisian Republic constitution as the basis of regional management. Civil society participation to the decision-making process is considered as a mean to identify measures that are more coherent with local populations’ needs. The development of agriculture and food value chains in rural areas is relevant within the framework of the implementation of new decisions systems that require public-private collaborations. These new systems can lead to actions in favor of improving living conditions of rural populations. The diverisification of activities around agriculture can be a solution for job creation and local value creation. The project for the promotion of sustainable agriculture and rural development in Tunisia has designed and implemented a multi-stakeholder dialogue process for the development of local value chains platforms in disadvantaged areas of the country. The platforms gather public and private organizations ; as well civil society organizations ; that intervene in a locality in relation to the production transformation or product’s commercialization. The role of these platforms is to formulate realize and evaluate collaborative actions or projects for the promotion of the concerned product and territory. The dialogue process steps allow to create the necessary collaboration conditions in order to promote viable collectivities, dynamic economies and healthy environments. Effectively, the dialogue process steps allow to identify the local leaders. These leaders recognize the development constraints and opportunities. They deal with key and gathering subjects around the collaborative projects or actions. They take common decisions in order to create effective coalitions for the implementation of common actions. The plateforms realize quick success so as to build trust. The project has supported the formulation of 22 collaborative projects. Seven priority collaborative projects have been realized. Each collaborative project includes 3 parts : the signature of the collaboration conventions between public and private organizations, investment in the relevant material in order to increase productivity and the quality of local and products and finally management and technical training in favour of producers’ organizations for the promotion of local products. The implementation of this process has enabled to enhance the capacities of collaboration between local actors : producers, traders, processors and support structures from public sector and civil society. It also allowed to improve the efficiency and relevance of actions and measures for agriculture and rural development programs. Thus, the process for the development of local value chain platform is a basis for sustainable development of agriculture.Keywords: governance, public private collaboration, rural development, value chains
Procedia PDF Downloads 28756 Small Town Big Urban Issues the Case of Kiryat Ono, Israel
Authors: Ruth Shapira
Abstract:
Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification
Procedia PDF Downloads 36155 Evaluation of Wheat Varieties for Water Use Efficiency under Staggering Sowing Times and Variable Irrigation Regimes under Timely and Late Sown Conditions
Authors: Vaibhav Baliyan, S. S. Parihar
Abstract:
With the rise in temperature during reproductive phase and moisture stress, winter wheat yields are likely to decrease because of limited plant growth, higher rate of night respiration, higher spikelet sterility or number of grains per spike and restricted embryo development thereby reducing grain number. Crop management practices play a pivotal role in minimizing adverse effects of terminal heat stress on wheat production. Amongst various agronomic management practices, adjusting sowing date, crop cultivars and irrigation scheduling have been realized to be simple yet powerful, implementable and eco-friendly mitigation strategies to sustain yields under elevated temperature conditions. Taking into account, large variability in wheat production in space and time, a study was conducted to identify the suitable wheat varieties under both early and late planting with suitable irrigation schedule for minimizing terminal heat stress effect and thereby improving wheat production. Experiments were conducted at research farms of Indian Agricultural Research Institute, New Delhi, India, separately for timely and late sown conditions with suitable varieties with staggering dates of sowing from 1st November to 30th November in case of timely sown and from 1st December to 31st December for late sown condition. The irrigation schedule followed for both the experiments were 100% of ETc (evapotranspiration of crop), 80% of ETc and 60% of ETc. Results of the timely sown experiment indicated that 1st November sowing resulted in higher grain yield followed by 10th November. However, delay in sowing thereafter resulted in gradual decrease in yield and the maximum reduction was noticed under 30th November sowing. Amongst the varieties, HD3086 produced higher grain yield compared to other varieties. Irrigation applied based on 100% of ETc gave higher yield comparable to 80% of ETc but both were significantly higher than 60% of ETc. It was further observed that even liberal irrigation under 100% of ETc could not compensate the yield under delayed sowing suggesting that rise in temperature beyond January adversely affected the growth and development of crop as well as forced maturity resulting in significant reduction of yield attributing characters due to terminal heat stress. Similar observations were recorded under late sown experiment too. Planting on 1st December along with 100% ETc of irrigation schedule resulted in significantly higher grain yield as compared to other dates and irrigation regimes. Further, it was observed that reduction in yield under late sown conditions was significantly large than the timely sown conditions irrespective of the variety grown and irrigation schedule followed. Delayed sowing resulted in reducing crop growth period and forced maturity in turn led to significant deterioration in all the yield attributing characters and there by reduction in yield suggesting that terminal heat stress had greater impact on yield under late sown crop than timely sown due to temperature rise coinciding with reproductive phase of the crop.Keywords: climate, irrigation, mitigation, wheat
Procedia PDF Downloads 12054 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts
Authors: Anand R. Nair, Markus Trenker
Abstract:
Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone
Procedia PDF Downloads 24653 Cuban's Supply Chains Development Model: Qualitative and Quantitative Impact on Final Consumers
Authors: Teresita Lopez Joy, Jose A. Acevedo Suarez, Martha I. Gomez Acosta, Ana Julia Acevedo Urquiaga
Abstract:
Current trends in business competitiveness indicate the need to manage businesses as supply chains and not in isolation. The use of strategies aimed at maximum satisfaction of customers in a network and based on inter-company cooperation; contribute to obtaining successful joint results. In the Cuban economic context, the development of productive linkages to achieve integrated management of supply chains is considering a key aspect. In order to achieve this jump, it is necessary to develop acting capabilities in the entities that make up the chains through a systematic procedure that allows arriving at a management model in consonance with the environment. The objective of the research focuses on: designing a model and procedure for the development of integrated management of supply chains in economic entities. The results obtained are: the Model and the Procedure for the Development of the Supply Chains Integrated Management (MP-SCIM). The Model is based on the development of logistics in the network actors, the joint work between companies, collaborative planning and the monitoring of a main indicator according to the end customers. The application Procedure starts from the well-founded need for development in a supply chain and focuses on training entrepreneurs as doers. The characterization and diagnosis is done to later define the design of the network and the relationships between the companies. It takes into account the feedback as a method of updating the conditions and way to focus the objectives according to the final customers. The MP-SCIM is the result of systematic work with a supply chain approach in companies that have consolidated as coordinators of their network. The cases of the edible oil chain and explosives for construction sector reflect results of more remarkable advances since they have applied this approach for more than 5 years and maintain it as a general strategy of successful development. The edible oil trading company experienced a jump in sales. In 2006, the company started the analysis in order to define the supply chain, apply diagnosis techniques, define problems and implement solutions. The involvement of the management and the progressive formation of performance capacities in the personnel allowed the application of tools according to the context. The company that coordinates the explosives chain for construction sector shows adequate training with independence and opportunity in the face of different situations and variations of their business environment. The appropriation of tools and techniques for the analysis and implementation of proposals is a characteristic feature of this case. The coordinating entity applies integrated supply chain management to its decisions based on the timely training of the necessary action capabilities for each situation. Other cases of study and application that validate these tools are also detailed in this paper, and they highlight the results of generalization in the quantitative and qualitative improvement according to the final clients. These cases are: teaching literature in universities, agricultural products of local scope and medicine supply chains.Keywords: integrated management, logistic system, supply chain management, tactical-operative planning
Procedia PDF Downloads 15352 Sustainable Strategies for Managing Rural Tourism in Abyaneh Village, Isfahan
Authors: Hoda Manafian, Stephen Holland
Abstract:
Problem statement: Rural areas in Iran are one of the most popular tourism destinations. Abyaneh Village is one of them with a long history behind it (more than 1500 years) which is a national heritage site and also is nominated as a world heritage site in UNESCO tentative list from 2007. There is a considerable foundation of religious-cultural heritage and also agricultural history and activities. However, this heritage site suffers from mass tourism which is beyond its social and physical carrying capacity, since the annual number of tourists exceed 500,000. While there are four adjacent villages around Abyaneh which can benefit from advantages of tourism. Local managers also can at the same time prorate the tourists’ flux of Abyaneh on those other villages especially in high-season. The other villages have some cultural and natural tourism attractions as well. Goal: The main goal of this study is to identify a feasible development strategy according to the current strengths, weaknesses, opportunities and threats of rural tourism in this area (Abyaneh Village and four adjacent villages). This development strategy can lead to sustainable management of these destinations. Method: To this end, we used SWOT analysis as a well-established tool for conducting a situational analysis to define a sustainable development strategy. The procedures included following steps: 1) Extracting variables of SWOT chart based on interviewing tourism experts (n=13), local elites (n=17) and personal observations of researcher. 2) Ranking the extracted variables from 1-5 by 13 tourism experts in Isfahan Cultural Heritage, Handcrafts and Tourism Organization (ICHTO). 3) Assigning weights to the ranked variables using Expert Choice Software and the method of Analytical Hierarchical Process (AHP). 4) Defining the Total Weighted Score (TWS) for each part of SWOT chart. 5) Identifying the strategic position according to the TWS 6) Selecting the best development strategy based on the defined position using the Strategic Position and Action Evaluation (SPACE) matrix. 7) Assessing the Probability of Strategic Success (PSS) for the preferred strategy using relevant formulas. 8) Defining two feasible alternatives for sustainable development. Results and recommendations: Cultural heritage attractions were first-ranked variable in strength chart and also lack of sufficient amenities for one-day tourists (catering, restrooms, parking, and accommodation) was firs-ranked weakness. The strategic position was in ST (Strength-Threat) quadrant which is a maxi-mini position. According this position we would suggest ‘Competitive Strategy’ as a development strategy which means relying on strengths in order to neutralization threats. The result of Probability of Strategic Success assessment which was 0.6 shows that this strategy could be successful. The preferred approach for competitive strategy could be rebranding the market of tourism in this area. Rebranding the market can be achieved by two main alternatives which are based on the current strengths and threats: 1) Defining a ‘Heritage Corridor’ from first adjacent village to Abyaneh as a final destination. 2) Focus on ‘educational tourism’ versus mass tourism and also green tourism by developing agritourism in that corridor.Keywords: Abyaneh village, rural tourism, SWOT analysis, sustainable strategies
Procedia PDF Downloads 38451 Migrant Women’s Rights “with Chinese Characteristics: The State of Migrant Women in the People’s Republic of China
Authors: Leigha C. Crout
Abstract:
This paper will investigate the categorical disregard of the People’s Republic of China (PRC) in establishing and maintaining a baseline standard of civil guarantees for economic migrant women and their dependents. In light of the relative forward strides in terms of policy facilitating the ascension of female workers in China, this oft-invisible subgroup of women remains neglected from the modern-day “iron rice bowl” of the self-identified communist state. This study is being undertaken to rectify the absence of data on this subject and provide a baseline for future studies on the matter, as the human rights of migrants has become an established facet of transnational dialogue and debate. The basic methodology of this research will consist of the evaluation of China’s compliance with its own national guidelines, and the eight international human rights law treaties it has ratified. Data will be extracted and cross-checked from a number of relevant sources to monitor the extent of compliance, including but by no means limited to the United Nations Human Rights Council (UNHRC) Universal Periodic Review (UPR) reports and responses, submissions and responses of international human rights treaty bodies, local and international nongovernmental organizations (NGOs) and their annual reports, and articles and commentaries authored by specialists on the modern state and implementation of Chinese law. Together, these data will illuminate the vast network of compliance that has forced many migrant women to work within situations of extreme economic precarity. The structure will proceed as follows: first, an outline of the current status of migrant workers and the enforcement of stipulated protections will be provided; next, the analysis of the oft-debated regulations directing and the outline of mandatory services guaranteed to external and internal migrants; and finally, a conclusion incorporating various recommendations to improve transparency and gradually decrease the amount of migrant work turned forced labor that typifies the economic migrant experience, especially in the case of women. The internal and international migrant workers in China are bound by different and uncomplimentary systems. The first, which governs Chinese citizens moving to different regions or provinces to find more sustainable employment (internal migrants), is called the hukou (or huji) residency system. This law enforces strict regulation of the movement of peoples, while ensuring that residents of urban areas receive preferential benefits to those received by their so-called “agricultural” resident counterparts. Given the overwhelming presence of the Communist Party of China throughout the vast state, the management of internal migrants and the disregard for foreign domestic workers is, at minimum, a surprising oversight. This paper endeavors to provide a much-needed foundation for future commentary and discussion on the treatment of female migrant workers and their families in the People’s Republic of China.Keywords: female migrant worker’s rights, the People’s Republic of China, forced labor, Hukou residency system
Procedia PDF Downloads 14650 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine
Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski
Abstract:
The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization
Procedia PDF Downloads 38649 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 3948 The Late Bronze Age Archeometallurgy of Copper in Mountainous Colchis (Lechkhumi), Georgia
Authors: Nino Sulava, Brian Gilmour, Nana Rezesidze, Tamar Beridze, Rusudan Chagelishvili
Abstract:
Studies of ancient metallurgy are a subject of worldwide current interest. Georgia with its famous early metalworking traditions is one of the central parts of in the Caucasus region. The aim of the present study is to introduce the results of archaeometallurgical investigations being undertaken in the mountain region of Colchis, Lechkhumi (the Tsageri Municipality of western Georgia) and establish their place in the existing archaeological context. Lechkhumi (one of the historic provinces of Georgia known from Georgian, Greek, Byzantine and Armenian written sources as Lechkhumi/Skvimnia/Takveri) is the part of the Colchian mountain area. It is one of the important but little known centres of prehistoric metallurgy in the Caucasian region and of Colchian Bronze Age culture. Reconnaissance archaeological expeditions (2011-2015) revealed significant prehistoric metallurgical sites in Lechkhumi. Sites located in the vicinity of Dogurashi Village (Tsageri Municipality) have become the target area for archaeological excavations. During archaeological excavations conducted in 2016-2018 two archaeometallurgical sites – Dogurashi I and Dogurashi II were investigated. As a result of an interdisciplinary (archaeological, geological and geophysical) survey, it has been established that at both prehistoric Dogurashi mountain sites, it was copper that was being smelted and the ore sources are likely to be of local origin. Radiocarbon dating results confirm they were operating between about the 13th and 9th century BC. More recently another similar site has been identified in this area (Dogurashi III), and this is about to undergo detailed investigation. Other prehistoric metallurgical sites are being located and investigated in the Lechkhumi region as well as chance archaeological finds (often in hoards) – copper ingots, metallurgical production debris, slag, fragments of crucibles, tuyeres (air delivery pipes), furnace wall fragments and other related waste debris. Other chance finds being investigated are the many copper, bronze and (some) iron artefacts that have been found over many years. These include copper ingots, copper, bronze and iron artefacts such as tools, jewelry, and decorative items. These show the important but little known or understood the role of Lechkhumi in the late Bronze Age culture of Colchis. It would seem that mining and metallurgical manufacture form part of the local agricultural yearly lifecycle. Colchian ceramics have been found and also evidence for artefact production, small stone mould fragments and encrusted material from the casting of a fylfot (swastika) form of Colchian bronze buckle found in the vicinities of the early settlements of Tskheta and Dekhviri. Excavation and investigation of previously unknown archaeometallurgical sites in Lechkhumi will contribute significantly to the knowledge and understanding of prehistoric Colchian metallurgy in western Georgia (Adjara, Guria, Samegrelo, and Svaneti) and will reveal the importance of this region in the study of ancient metallurgy in Georgia and the Caucasus. Acknowledgment: This work has been supported by the Shota Rustaveli National Science Foundation (grant FR # 217128).Keywords: archaeometallurgy, Colchis, copper, Lechkhumi
Procedia PDF Downloads 136