Search results for: structure and architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9104

Search results for: structure and architecture

7004 Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66 and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay content; however, at low frequencies this increase is governed by the content of nanofiller while at high frequencies it is mainly determined by talc content. A similar trend was also observed for the variations of storage modulus (G′) and loss modulus (G″) with frequency. The results showed that the use of nanoclay considerably affects the melt elasticity.

Keywords: nanocomposites, polypropylene, polyamide66, modified nanoclay, rheology

Procedia PDF Downloads 373
7003 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study

Authors: Tsu-Hsu Yen

Abstract:

The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.

Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability

Procedia PDF Downloads 103
7002 A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units

Authors: Minsun Kim, Ki-Sun Choi, Hyun-Jee Lee, Young-Chan You

Abstract:

There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design.

Keywords: design for extension, performance-based design, remodeling, shear wall frame, structural analysis

Procedia PDF Downloads 218
7001 Photo-Induced Reversible Surface Wettability Analysis of GLAD Synthesized In2O3/TiO2 Heterostructure Nanocolumn

Authors: Pheiroijam Pooja, P. Chinnamuthu

Abstract:

A novel vertical 1D In2O3/TiO2 nanocolumn (NC) axial heterostructure has been successfully synthesized using Glancing Angle Deposition (GLAD) technique inside E-Beam Evaporator chamber. Field emission scanning electron microscope (FESEM) has been used to evaluate the morphology of the structure grown. The estimated length of In2O3/TiO2 NC is ~250 nm and ~300nm for In2O3 and TiO2 respectively with diameter ~60-90 nm. The surface of the heterostructure is porous in nature which can affect the interfacial wettability properties. The grown structure has been further characterized using X-ray Diffraction (XRD) and UV-Visible absorption measurement. The polycrystalline nature of the sample has been examined using XRD with prominent peaks obtained with phase (101) for anatase TiO2 and (211) for In2O3. Here, 1D axial heterostructure NC thus favors efficient segregation of photo-excited carriers due to their type II band alignment between the constituent materials. Moreover, the 1D nanostructure is known for their large surface area and excellent ionic charge transport property. On exposure to UV light illumination, the surface properties of In2O3/TiO2 NC changes whereby the hydrophobic nature of the heterostructure changes to hydrophilic. As a result, the reversible surface wettability of heterostructure on interaction with UV light can give potential applications as antifogging and self-cleaning surfaces.

Keywords: GLAD, heterostructure, In2O3/TiO2 NC, surface wettability

Procedia PDF Downloads 157
7000 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy

Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa

Abstract:

Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.

Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator

Procedia PDF Downloads 194
6999 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications

Authors: Najib Al-Fadhali, Huda Majid

Abstract:

In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.

Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications

Procedia PDF Downloads 74
6998 Potential Use of Cnidoscolus Chayamansa Leaf from Mexico as High-Quality Protein Source

Authors: Diana Karina Baigts Allende, Mariana Gonzalez Diaz, Luis Antonio Chel Guerrero, Mukthar Sandoval Peraza

Abstract:

Poverty and food insecurity are still incident problems in the developing countries, where population´s diet is based on cereals which are lack in protein content. Nevertheless, during last years the use of native plants has been studied as an alternative source of protein in order to improve the nutritional intake. Chaya crop also called Spinach tree, is a prehispanic plant native from Central America and South of Mexico (Mayan culture), which has been especially valued due to its high nutritional content particularly protein and some medicinal properties. The aim of this work was to study the effect of protein isolation processing from Chaya leaf harvest in Yucatan, Mexico on its structure quality in order: i) to valorize the Chaya crop and ii) to produce low-cost and high-quality protein. Chaya leaf was extruded, clarified and recovered using: a) acid precipitation by decreasing the pH value until reach the isoelectric point (3.5) and b) thermal coagulation, by heating the protein solution at 80 °C during 30 min. Solubilized protein was re-dissolved in water and spray dried. The presence of Fraction I protein, known as RuBisCO (Rubilose-1,5-biphosfate carboxylase/oxygenase) was confirmed by gel electrophoresis (SDS-PAGE) where molecular weight bands of 55 KDa and 12 KDa were observed. The infrared spectrum showed changes in protein structure due to the isolation method. The use of high temperatures (thermal coagulation) highly decreased protein solubility in comparison to isoelectric precipitated protein, the nutritional properties according to amino acid profile was also disturbed, showing minor amounts of overall essential amino acids from 435.9 to 367.8 mg/g. Chaya protein isolate obtained by acid precipitation showed higher protein quality according to essential amino acid score compared to FAO recommendations, which could represent an important sustainable source of protein for human consumption.

Keywords: chaya leaf, nutritional properties, protein isolate, protein structure

Procedia PDF Downloads 334
6997 Decoupling PM₂.₅ Emissions and Economic Growth in China over 1998-2016: A Regional Investment Perspective

Authors: Xi Zhang, Yong Geng

Abstract:

It is crucial to decouple economic growth from environmental pollution in China. This study aims to evaluate the decoupling degree between PM₂.₅ emissions and economic growth in China from a regional investment perspective. Using the panel data of 30 Chinese provinces for the period of 1998-2016, this study combines decomposition analysis with decoupling analysis to identify the roles of conventional factors and three novel investment factors in the mitigation and decoupling of PM₂.₅ emissions in China and its four sub-regions. The results show that China’s PM₂.₅ emissions were weakly decoupled to economic growth during the period of 1998-2016, as well as in China’s four sub-regions. At the national level, investment scale played the dominant role while investment structure had a marginal effect. In contrast, emission intensity was the largest driver in promoting the decoupling effect, followed by investment efficiency and energy intensity. The investment scale effect in the western region far exceeded those in other three sub-regions. At the provincial level, the investment structure of Inner Mongolia and investment scales of Xinjiang and Inner Mongolia had the greatest impacts on PM₂.₅ emission growth. Finally, several policy recommendations are raised for China to mitigate its PM₂.₅ emissions.

Keywords: decoupling, economic growth, investment, PM₂.₅ emissions

Procedia PDF Downloads 110
6996 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures

Authors: Haleh Hamidpour

Abstract:

Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.

Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism

Procedia PDF Downloads 323
6995 Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study

Authors: Amin H. Almasria, Rajai Z. Alrousanb, Al-Harith Manasrah

Abstract:

The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives.

Keywords: finite element method, dynamic impact, pedestrian bridges, strain energy, collapse failure

Procedia PDF Downloads 616
6994 PhD Research Design and Descriptive Theory: Theoretical Framework for Development of Integrated Management System

Authors: Samuel Quashie

Abstract:

The importance of theory for PhD construction management research cannot be underestimated, as it requires a sound theoretical basis. Theory efficiency reduces errors in the research problem, solving it by building upon current theory. Provides a structure for examination, enables the efficient development of the construction management field and to it practical real world problems. The aim is to develop the theoretical framework for the application of descriptive theory within the PhD research design To apply the proposed theoretical framework using the case of the topic of ‘integrated management system,’ classifying the phenomena into categories, explore the association between the category–defining attributes and the outcome observed. Forming categorization based upon attributes of phenomena (framework and typologies), and statement of association (models). Predicting (deductive process) and confirming (inductive process). The descriptive theory is important and provides a structure for examination, enables the efficient development of construction management field and to it practical real world problems. In conclusion, the work done in management presents fertile ground for research and theory development.

Keywords: descriptive theory, PhD research design, theoretical framework, construction management

Procedia PDF Downloads 414
6993 Homology Modelling of Beta Defensin 3 of Bos taurus and Its Docking Studies with Molecules Responsible for Formation of Biofilm

Authors: Ravinder Singh, Ankita Gurao, Saroj Bandhan, Sudhir Kumar Kashyap

Abstract:

The Bos taurus Beta defensin 3 is a defensin peptide secreted by neutrophils and epithelial that exhibits anti-microbial activity. It is one of the crucial components forming an innate defense against intra mammary infections in livestock. The beta defensin 3 by virtue of its anti-microbial activity inhibits major mastitis pathogens including Staphylococcus aureus and Pseudomonas aeruginosa etc, which are also responsible for biofilm formation leading to antibiotic resistance phenomenon. Therefore, the defensin may prove as a non-conventional option to treat mastitis. In this study, computational analysis has been performed including sequence comparison among species and homology modeling of Bos taurus beta defensin 3 protein. The assessments of protein structure were done using the protein structure and model assessment tools integrated in Swiss Model server, which employs various local and global quality evaluation parameters. Further, molecular docking was also carried out between the defensin peptide and the components of biofilm to gain insight into various interactions and structural differences crucial for functionality of this protein.

Keywords: beta defensin 3, bos taurus, docking, homology modeling

Procedia PDF Downloads 283
6992 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 113
6991 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum

Authors: Nassira Ouslimani

Abstract:

The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.

Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia

Procedia PDF Downloads 79
6990 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method

Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir

Abstract:

The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.

Keywords: laminar forced convection, lbm, triangular prism

Procedia PDF Downloads 364
6989 Theoretical Method for Full Ab-Initio Calculation of Rhenium Carbide Compound

Authors: D.Rached, M.Rabah

Abstract:

First principles calculations are carried out to investigate the structural, electronic, and elastic properties of the utraincompressible materials, namely, noble metal carbide of Rhenium carbide (ReC) in four phases, the rocksalt (NaCl-B1), zinc blende (ZB-B2), the tungsten carbide(Bh) (WC), and the nickel arsenide (NiAs-B8).The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus its pressure derivate, and the hardness of ReC in these phases are systematically predicted by calculations from first–principles. The corresponding calculated bulk modulus is comparable with that of diamond, especially for the B8 –type rhenium carbide (ReC), the incompressibility along the c axis is demonstrated to exceed the linear incompressibility of diamond. Our calculations confirm in the nickel arsenide (B8) structure the ReC is found to be stable with a large bulk modulus B=440 GPa and the tungsten carbide (WC) structure becomes the most more favourable with to respect B3 and B1 structures, which ReC- WC is meta-stable. Furthermore, the highest bulk modulus values in the zinc blende (B3), rock salt (B1), tungsten carbide (WC), and the nickel arsenide (B8) structures (294GPa, 401GPa, 415GPa and 447 GPa, respectively) indicates that ReC is a hard material, and is superhard compound H(B8)= 36 GPa compared with the H(diamond)=96 GPa and H(c BN)=63.10 GPa.

Keywords: DFT, FP-LMTO, mechanical properties, elasticity, high pressure, thermodynamic properties, hard material

Procedia PDF Downloads 432
6988 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C

Authors: Haiming Wen, Isabella J. Van Rooyen

Abstract:

Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.

Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation

Procedia PDF Downloads 257
6987 Effect of Substrate Temperature on Structure and Properties of Sputtered Transparent Conducting Film of La-Doped BaSnO₃

Authors: Alok Tiwari, Ming Show Wong

Abstract:

Lanthanum (La) doped Barium Tin Oxide (BaSnO₃) film is an excellent alternative for expensive Transparent Conducting Oxides (TCOs) film such as Indium Tin Oxide (ITO). However single crystal film of La-doped BaSnO₃ has been reported with a good amount of conductivity and transparency but in order to improve its reachability, it is important to grow doped BaSO₃ films on an inexpensive substrate. La-doped BaSnO₃ thin films have been grown on quartz substrate by Radio Frequency (RF) sputtering at a different substrate temperature (from 200⁰C to 750⁰C). The thickness of the film measured was varying from 360nm to 380nm with varying substrate temperature. Structure, optical and electrical properties have been studied. The carrier concentration is seen to be decreasing as we enhance the substrate temperature while mobility found to be increased up to 9.3 cm²/V-S. At low substrate temperature resistivity found was lower (< 3x10⁻³ ohm-cm) while sudden enhancement was seen as substrate temperature raises and the trend continues further with increasing substrate temperature. Optical transmittance is getting better with higher substrate temperature from 70% at 200⁰C to > 80% at 750⁰C. Overall, understanding of changes in microstructure, electrical and optical properties of a thin film by varying substrate temperature has been reported successfully.

Keywords: conductivity, perovskite, mobility, TCO film

Procedia PDF Downloads 156
6986 The Paradox of Design Aesthetics and the Sustainable Design

Authors: Asena Demirci, Gozen Guner Aktaş, Nur Ayalp

Abstract:

Nature provides a living space for humans, also in contrast it is destroyed by humans for their personal needs and ambitions. For decreasing these damages against nature, solutions are started to generate and to develop. Moreover, precautions are implemented. After 1960s, especially when the ozone layer got harmed and got thinner by toxic substances coming from man made structures, environmental problems which effected human’s activities of daily living. Thus, this subject about environmental solutions and precautions is becoming a priority issue for scientists. Most of the environmental problems are caused by buildings and factories which are built without any concerns about protecting nature. This situation creates awareness about environmental issues and also the terms like sustainability, Renewable energy show up in building, Construction and architecture sectors to provide environmental protection. In this perspective, the design disciplines also should be respectful to nature and the sustainability. Designs which involve the features like sustainability, renewability and being ecologic have specialties to be less detrimental to the environment rather than the designs which do not involve. Furthermore, these designs produce their own energy for consuming, So they do not use the natural resources. They do not contain harmful substances and they are made of recyclable materials. Thus, they are becoming environmentally friendly structures. There is a common concern among designers about the issue of sustainable design. They believe that the idea of sustainability inhibits the creativity. All works of design resemble each other from the point of aesthetics and technological matters. In addition, there is a concern about design ethics which aesthetic designs cannot be accepted as a priority. For these reasons, there are few designs included the features of being eco-friendly and well-designed and also had design concerns around the world. Despite the other design disciplines, The concept of sustainability is getting more important each day in interior architecture and interior design. As it is known that human being spends 90 % of his life in interior spaces, The importance of that concept in interior spaces is obvious. Aesthetic is another vital concern in interior space design also. Most of the time sustainable materials and sustainable interior design applications conflicts with personal aesthetic parameters. This study aims to discuss the great paradox between the design aesthetic and the sustainable design. Does the sustainable approach in interior design disturbs the design aesthetic? This is one of the most popular questions that have been discussed for a while. With this paper this question will be evaluated with a case study which analyzes the aesthetic perceptions and preferences of the users and designers in sustainable interior spaces.

Keywords: aesthetics, interior design, sustainable design, sustainability

Procedia PDF Downloads 278
6985 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions

Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh

Abstract:

This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.

Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor

Procedia PDF Downloads 624
6984 Revolutions and Cyclic Patterns in Chinese Town Planning: The Case-Study of Shenzhen

Authors: Domenica Bona

Abstract:

Colin Chant and David Goodman argue that historians of Chinese pre-industrial cities tend to underestimate revolutions and overestimate cyclic patterns: periods of peace and prosperity in the earl part of each d nast , followed b peasants’ rebellions and upheavals. Boyd described these cyclic patterns as part of the background of Chinese town planning and architecture. Thus old ideals of city planning-square plan, southward orientation and a palace along the central axis - are revived again and again in the ascendant phases of several d nastic c cles (e.g. Chang’an, Kaifen, and Beijing). Along this line of thought, m paper questions the relationship between the “magic square rule” and modern Chinese urban- planning. As a matter of fact, the classical theme of “cosmic Taoist urbanism” is still a reference for planning cities and new urban developments, whenever there is the intention to express nationalist ideals and “cultural straightforwardness.” Besides, some case studies can be related to “modern d nasties”: the first Republic under the Kuo Min Tang, the red People’s Republic and the post-Maoist open country of Deng Xiao Ping. Considering the project for the new capital of Nanjing in the Thirties, Beijing’s Tianan Men area in the ifties, and Shenzhen’s utian CBD in late 20th century, I argue that cyclic patterns are still in place, though with deformations related to westernization, private interests and lack of spirituality. How far new Chinese cities are - or simply seem to be - westernized? Symbolism, invisible frameworks, repeating features and behavioural patterns make urban China just “superficiall” western. This can be well noticed in cities previousl occupied b foreigners, like Hong Kong, or in newly founded ones, like Shenzhen, where both Asians and non-Asian people can feel the gender-shift from New-York-like landscapes to something else. Current planning in main metropolitan areas shows a blurred relationship between public policies and private investments: two levels of decisions and actions, one addressing the larger scale and infrastructures, the other concerning the micro scale and development of single plots. While zoning is instrumental in this process, master plans are often laid out over a very poor cartography, so much that any relation between the formal characters of new cities and the centuries-old structure of the related territory gets lost.

Keywords: China, contemporary cities, cultural heritage, shenzhen, urban planning

Procedia PDF Downloads 353
6983 Effect of Masonry Infill in R.C. Framed Buildings

Authors: Pallab Das, Nabam Zomleen

Abstract:

Effective dissipation of lateral loads that are coming due to seismic force determines the strength, durability and safety concern of the structure. Masonry infill has high stiffness and strength capabilities which can be put into an effective utilization for lateral load dissipation by incorporating it into building construction, but masonry behaves in highly nonlinear manner, so it is highly important to find out generalized, yet a rational approach to determine its nonlinear behavior and failure mode and it’s response when it is incorporated into building. But most of the countries do not specify the procedure for design of masonry infill wall. Whereas, there are many analytical modeling method available in literature, e.g. equivalent diagonal strut method, finite element modeling etc. In this paper the masonry infill is modeled and 6-storey bare framed building and building with masonry infill is analyzed using SAP-200014 in order to find out inter-storey drift by time-history analysis and capacity curve by Pushover analysis. The analysis shows that, while, the structure is well within CP performance level for both the case, whereas, there is considerable reduction of inter-storey drift of about 28%, when the building is analyzed with masonry infill wall.

Keywords: capacity curve, masonry infill, nonlinear analysis, time history analysis

Procedia PDF Downloads 369
6982 Investigation of Flow Structure over X-45 Type Non-Slender Delta Wing Planform

Authors: B. Yanıktepe, C. Özalp, B. Şahin

Abstract:

Delta wing planform is an essential aerodynamic configuration, which could be effectively used at relatively high angles of attack than conventional wings in subsonic flow conditions. The flow over delta wings can be characterized by a pair of leading edge vortices emanating from wing apex. Boundary layer separation causes these vortical structures formed by rolling up of viscous flow sheet. This flow separation mechanism is occurred due to angle of attack and sharp leading edges of the delta wing. Therefore, complexity and variety in planform designs rise to catch the best under abnormal flow conditions. The present experimental study investigates the near surface flow structure and aerodynamic flow characteristics of X-45 type non-slender delta wing planform using dye visualization, Stereoscopic Particle Image Velocimetry (stereo-PIV). The instantaneous images are acquired on the plan-view plane within 5o≤α≤20o to calculate the time-averaged flow data. It can be concluded that vortical flow with a pair of well-defined LEVs over X-45 develop at very low angles of attack, secondary vortex are also evident and form close to the wing surface similar to delta and lambda planforms. The stall occurs at an angle of attack α=32o.

Keywords: aerodynamic, delta wing, PIV, vortex breakdown

Procedia PDF Downloads 413
6981 Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: calorimetry, entropy, heat capacity, Gibbs energy of formation, rare earth iron garnets

Procedia PDF Downloads 347
6980 Influence of Javascript Programming on the Developement of Web and Mobile Application

Authors: Abdul Basit Kiani

Abstract:

Web technologies are growing rapidly in the current era with the increasing development of the web, various novel web technologies emerged to web applications, compared to HTML. JavaScript is the language that provided a dynamic web site which actively interacts with users. The JavaScript language supports the Model View Controller (MVC) architecture that maintains a readable code and clearly separates parts of the program code. Our research is focused on the comparison of the popular JavaScript frameworks; Angular JS, Django, Node JS, Laravel. These frameworks are rely on MVC. In this paper, we will discuss the merits and demerits of each framework, the influence on the application speed, testing methods, for example, JS applications, and methods to advance code security.

Keywords: java script, react, nodejs, htmlcsss

Procedia PDF Downloads 103
6979 Identification of the Interior Noise Sources of Rail Vehicles

Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park

Abstract:

The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.

Keywords: rail vehicle, high-speed, interior noise, noise source

Procedia PDF Downloads 389
6978 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks

Authors: Bukunola K. Oguntade, Gareth M. Watkins

Abstract:

The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.

Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc

Procedia PDF Downloads 122
6977 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation

Authors: Yuechao Lei, Lei Zhang

Abstract:

The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.

Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay

Procedia PDF Downloads 43
6976 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+

Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa

Abstract:

Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.

Keywords: adsorption, acidity, ion exchange, zeolite

Procedia PDF Downloads 188
6975 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 167