Search results for: solar radiation forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3026

Search results for: solar radiation forecast

926 A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride

Authors: A. Melouah, M. Diaf

Abstract:

The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained.

Keywords: photoluminescence, Erbium, GaN, semiconductor materials

Procedia PDF Downloads 414
925 Impact of the Transport on the Urban Heat Island

Authors: L. Haddad, Z. Aouachria

Abstract:

The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.

Keywords: atmospheric pollution, impact on the health, urban transport, heat island

Procedia PDF Downloads 395
924 Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method

Authors: P. C. Okafor, A. J. Ekpunobi

Abstract:

Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed.

Keywords: copper sulphide (CuS), Manganese (Mn) doping, electrodeposition, optical band gap, optical conductivity, electrical conductivity

Procedia PDF Downloads 722
923 Maximum Power Point Tracking Using Fuzzy Logic Control for a Stand-Alone PV System with PI Controller for Battery Charging Based on Evolutionary Technique

Authors: Mohamed A. Moustafa Hassan, Omnia S .S. Hussian, Hany M. Elsaved

Abstract:

This paper introduces the application of Fuzzy Logic Controller (FLC) to extract the Maximum Power Point Tracking (MPPT) from the PV panel. In addition, the proportional integral (PI) controller is used to be the strategy for battery charge control according to acceptable performance criteria. The parameters of the PI controller have been tuned via Modified Adaptive Accelerated Coefficient Particle Swarm Optimization (MAACPSO) technique. The simulation results, using MATLAB/Simulink tools, show that the FLC technique has advantages for use in the MPPT problem, as it provides a fast response under changes in environmental conditions such as radiation and temperature. In addition, the use of PI controller based on MAACPSO results in a good performance in terms of controlling battery charging with constant voltage and current to execute rapid charging.

Keywords: battery charging, fuzzy logic control, maximum power point tracking, PV system, PI controller, evolutionary technique

Procedia PDF Downloads 166
922 Theoretical and Computational Investigation of PCBM and PC71BM Derivatives using the DFT Method

Authors: Zair Mohammed El Amine, Chemouri Hafida, Derbal Habak Hassina

Abstract:

Organic photovoltaic cells are electronic devices that convert sunlight into electricity. To this end, the number of studies on organic photovoltaic cells (OVCs) is growing, and this trend is expected to continue. Computational studies are still needed to verify and prove the capability of CVOs, specifically the nanometer molecule PCBM, based on successful experimental results. In this paper, we present a theoretical and computational investigation of PCBM and PC71BM derivatives using the DFT method. On this basis, we employ independent and time-dependent density theories. HOMO, LUMO and GAPH-L energies, ionization potentials and electronic affinity are determined and found to be in agreement with experiments. Using DFT theory based on B3LYP and M062X methods with bases 6-31G (d,p) and 6-311G (d), calculations show that the most efficient acceptors are presented in the group of PC71BM derivatives and are in substantial agreement with experiments. The geometries of the structures are optimized by Gaussian 09.

Keywords: PCBM, P3HT, organic cell solar, DFT, TD-DFT

Procedia PDF Downloads 86
921 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers

Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez

Abstract:

An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.

Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization

Procedia PDF Downloads 162
920 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals

Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova

Abstract:

Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.

Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk

Procedia PDF Downloads 240
919 Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle

Authors: Raymond Yudhi Purba, Levy Olivia Nur, Radial Anwar

Abstract:

This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB.

Keywords: skew planar wheel, cloverleaf, first-person view, unmanned aerial vehicle, parameter sweep

Procedia PDF Downloads 216
918 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 156
917 Effect of the Tidal Charge Parameter on CMBR Temperature Anisotropies

Authors: Evariste Boj, Jan Schee

Abstract:

We present the temperature anisotropy of the cosmic microwave background radiation due to the inhomogeneity region constructed on a 3-brane in the framework of a Randall-Sundrum one brane immersed into a 5D bulk $AdS_5$ spacetime. We employ the Brane-World Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model to describe the cosmic expansion on the brane. The inhomogeneity is modeled by the static, spherically symmetric spacetime that replaces the spherically symmetric part of a dust-filled universe and is connected to the FLRW spacetime through the junction conditions. As the vacuum region expands it induces an additional frequency shift to a CMBR photon passing through this inhomogeneity in comparison to the case of a photon propagating through a pure FLRW spacetime. This frequency shift is associated with the effective temperature change of the CMBR in the corresponding direction. We give an estimate of the CMBR effective temperature changes with the change of the value of the tidal charge parameter.

Keywords: CMBR, Randall-Sundrum model, Rees-Sciama effect, Braneworld

Procedia PDF Downloads 214
916 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method

Procedia PDF Downloads 303
915 Six Tropical Medicinal Plants Effects in the Treatment of Prostate Diseases in Forty Different Patients

Authors: T. Nalowa, L. Foncha, S. Eposi

Abstract:

Prostate enlargement, prostate cancer are major global health problems affecting many men as they advance in age. It is highly recommended to encourage older men to get Prostate Specific Antigen test screening frequently. Conventional treatments like radiation, chemotherapy are associated with many side effects. And this situation is a call for concern. Traditional medicine is affordable, easily prepared with little or no side effects and it contains many phytochemicals. The study aims to find the cure for prostate cancer and prostate enlargement by extracting products from plant tissues of specific herbs to determine anti-inflammatory, anti-cancer, and anti-hematuria properties. Descriptive statistical analysis was applied to describe the data process. The commonly used method of preparation was extraction. Overall, 40 patients were classified based on their medical conditions on their underlying user report. Rural communities in Fako are rich sources of plants with medicinal properties. The used plants consequently provide basic information and aid to investigate the cure of prostate cancer and prostate enlargement, with great significance.

Keywords: cancer, enlargement, metastases, prostate

Procedia PDF Downloads 75
914 Primary and Secondary Big Bangs Theory of Creation of Universe

Authors: Shyam Sunder Gupta

Abstract:

The current theory for the creation of the universe, the Big Bang theory, is widely accepted but leaves some unanswered questions. It does not explain the origin of the singularity or what causes the Big Bang. The theory of the Big Bang also does not explain why there is such a huge amount of dark energy and dark matter in our universe. Also, there is a question related to one universe or multiple universes which needs to be answered. This research addresses these questions using the Bhagvat Puran and other Vedic scriptures as the basis. There is a Unique Pure Energy Field that is eternal, infinite, and finest of all and never transforms when in its original form. The Carrier Particles of Unique Pure Energy are Param-anus- Fundamental Energy Particles. Param-anus and a combination of these particles create bigger particles from which the Universe gets created. For creation to initiate, Unique Pure Energy is represented in three phases: positive phase energy, neutral phase eternal time energy and negative phase energy. Positive phase energy further expands in three forms of creative energies (CE1, CE2andCE3). From CE1 energy, three energy modes, mode of activation, mode of action, and mode of darkness, were created. From these three modes, 16 Principles, subtlest forms of energies, namely Pradhan, Mahat-tattva, Time, Ego, Intellect, Mind, Sound, Space, Touch, Air, Form, Fire, Taste, Water, Smell, and Earth, get created. In the Mahat-tattva, dominant in the Mode of Darkness, CE1 energy creates innumerable primary singularities from seven principles: Pradhan, Mahat-tattva, Ego, Sky, Air, Fire, and Water. CE1 energy gets divided as CE2 and enters, along with three modes and time, in each singularity, and primary Big Bang takes place, and innumerable Invisible Universes get created. Each Universe has seven coverings of 7 principles, and each layer is 10 times thicker than the previous layer. By energy CE2, space in Invisible Universe under the coverings is divided into two halves. In the lower half, the process of evolution gets initiated, and seeds of 24 elements get created, out of which 5 fundamental elements, building blocks of matter, Sky, Air, Fire, Water and Earth, create seeds of stars, planets, galaxies and all other matter. Since 5 fundamental elements get created out of the mode of darkness, it explains why there is so much dark energy and dark matter in our Universe. This process of creation, in the lower half of Invisible universe continues for 2.16 billion years. Further, in the lower part of the energy field, exactly at the Centre of Invisible Universe, Secondary Singularity is created, through which, by force of Mode of Action, Secondary Big Bang takes place and Visible Universe gets created in the shape of Lotus Flower, expanding into upper part. Visible matter starts appearing after a gap of 360,000 years. Within the Visible Universe, a small part gets created known as the Phenomenal Material World, which is our Solar System, the sun being in the Centre. Diameter of Solar planetary system is 6.4 billion km.

Keywords: invisible universe, phenomenal material world, primary Big Bang, secondary Big Bang, singularities, visible universe

Procedia PDF Downloads 89
913 Parametric Study of Vertical Diffusion Stills for Water Desalination

Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still

Procedia PDF Downloads 405
912 The Influence of Market Attractiveness and Core Competence on Value Creation Strategy and Competitive Advantage and Its Implication on Business Performance

Authors: Firsan Nova

Abstract:

The average Indonesian watches 5.5 hours of TV a day. With a population of 242 million people and a Free-to-Air (FTA) TV penetration rate of 56%, that equates to 745 million hours of television watched each day. With such potential, it is no wonder that many companies are now attempting to get into the Pay TV market. Research firm Media Partner Asia has forecast in its study that the number of Indonesian pay-television subscribers will climb from 2.4 million in 2012 to 8.7 million by 2020, with penetration scaling up from 7 percent to 21 percent. Key drivers of market growth, the study says, include macro trends built around higher disposable income and a rising middle class, with leading players continuing to invest significantly in sales, distribution and content. New entrants, in the meantime, will boost overall prospects. This study aims to examine and analyze the effect of Market Attractiveness and the Core Competence on Value Creation and Competitive Advantage and its impact to Business Performance in the pay TV industry in Indonesia. The study using strategic management science approach with the census method in which all members of the population are as sample. Verification method is used to examine the relationship between variables. The unit of analysis in this research is all Indonesian Pay TV business units totaling 19 business units. The unit of observation is the director and managers of each business unit. Hypothesis testing is performed by using statistical Partial Least Square (PLS). The conclusion of the study shows that the market attractiveness affects business performance through value creation and competitive advantage. The appropriate value creation comes from the company ability to optimize its core competence and exploit market attractiveness. Value creation affects competitive advantage. The competitive advantage can be determined based on the company's ability to create value for customers and the competitive advantage has an impact on business performance.

Keywords: market attractiveness, core competence, value creation, competitive advantage, business performance

Procedia PDF Downloads 348
911 Radionuclides Transport Phenomena in Vadose Zone

Authors: R. Testoni, R. Levizzari, M. De Salve

Abstract:

Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.

Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization, radiation protection

Procedia PDF Downloads 397
910 Modeling and Simulation Analysis and Design of Components of the Microgrid Prototype System

Authors: Draou Azeddine, Mazin Alahmadi, Abdulrahmane Alkassem, Alamri Abdullah

Abstract:

The demand for electric power in Saudi Arabia is steadily increasing with economic growth. More power plants should be installed to increase generation capacity and meet demand. Electricity in Saudi Arabia is mainly dependent on fossil fuels, which are a major problem as they deplete natural resources and increase CO₂ emissions. In this research work, performance and techno-economic analyzes are conducted to evaluate a microgrid system based on hybrid PV/wind diesel power sources as a stand-alone system for rural electrification in Saudi Arabia. The total power flow, maximum power point tracking (MPPT) efficiency, effectiveness of the proposed control strategy, and total harmonic distortion (THD) are analyzed in MATLAB/Simulink environment. Various simulation studies have been carried out under different irradiation conditions. The sizing, optimization, and economic feasibility analysis were performed using Homer energy software.

Keywords: WIND, solar, microgrid, energy

Procedia PDF Downloads 108
909 'Low Electronic Noise' Detector Technology in Computed Tomography

Authors: A. Ikhlef

Abstract:

Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.

Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector

Procedia PDF Downloads 126
908 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle

Authors: Hassam Muazzam

Abstract:

This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.

Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location

Procedia PDF Downloads 409
907 A Data-Driven Agent Based Model for the Italian Economy

Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio

Abstract:

We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.

Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data

Procedia PDF Downloads 69
906 Influence of Single Source Irradiation on the Homogeneous Alignment of Liquid Crystals Molecules on Glass Substrates

Authors: Sarah Akhtar, Rizwan Mahmood

Abstract:

A detailed study of homogeneous alignment of liquid crystal molecules on a glass substrate will be presented. Thin films of polyimide were coated on several glass substrates. Various methods were employed to prepare coated surfaces to achieve desired alignment; these include traditionally rubbing the surface with a felt cloth then exposing them perpendicular to the easy axis with incandescent light (IL), linearly polarized ultraviolet (LPUVR) and un-polarized ultraviolet (UPUVR) radiation. The quality of the alignment was tested by measuring the tilt angle in the temperature range between 30°C to 55°C. Regression analysis of the data using ‘SigmaPlot’ suggests a gradual increase in tilt angle (1.1°-1.8°) for the rubbed, 0.6° to 3.6° increase for the rubbed plus IL radiated and 1.6° to 4.6° for the rubbed plus UPUVL radiated samples, respectively. However to our surprise, we found tilt angle to be decreasing from 2.4° to 1.6° for the rubbed plus LPUVL radiated samples. We hope that these findings will be helpful in the fabrication of display panels and other electro-optic devices.

Keywords: homogeneous, liquid crystals, polyimide, tilt angle

Procedia PDF Downloads 118
905 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems

Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain

Abstract:

This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.

Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order

Procedia PDF Downloads 564
904 Optimization of Hybrid off Grid Energy Station

Authors: Yehya Abdellatif, Iyad M. Muslih, Azzah Alkhalailah, Abdallah Muslih

Abstract:

Hybrid Optimization Model for Electric Renewable (HOMER) software was utilized to find the optimum design of a hybrid off-Grid system, by choosing the optimal solution depending on the cost analysis of energy based on different capacity shortage percentages. A complete study for the site conditions and load profile was done to optimize the design and implementation of a hybrid off-grid power station. In addition, the solution takes into consecration the ambient temperature effect on the efficiency of the power generation and the economical aspects of selection depending on real market price. From the analysis of the HOMER model results, the optimum hybrid power station was suggested, based on wind speed, and solar conditions. The optimization function objective is to minimize the Net Price Cost (NPC) and the Cost of Energy (COE) with zero and 10 percentage of capacity shortage.

Keywords: energy modeling, HOMER, off-grid system, optimization

Procedia PDF Downloads 563
903 Optimization of Floor Heating System in the Incompressible Turbulent Flow Using Constructal Theory

Authors: Karim Farahmandfar, Hamidolah Izadi, Mohammadreza Rezaei, Amin Ardali, Ebrahim Goshtasbi Rad, Khosro Jafarpoor

Abstract:

Statistics illustrates that the higher amount of annual energy consumption is related to surmounting the demand in buildings. Therefore, it is vital to economize the energy consumption and also find the solution with regard to this issue. One of the systems for the sake of heating the building is floor heating. As a matter of fact, floor heating performance is based on convection and radiation. Actually, in addition to creating a favorable heating condition, this method leads to energy saving. It is the goal of this article to outline the constructal theory and introduce the optimization method in branch networks for floor heating. There are several steps in order to gain this purpose. First of all, the pressure drop through the two points of the network is calculated. This pressure drop is as a function of pipes diameter and other parameters. After that, the amount of heat transfer is determined. Consequently, as a result of the combination of these two functions, the final function will be determined. It is necessary to mention that flow is laminar.

Keywords: constructal theory, optimization, floor heating system, turbulent flow

Procedia PDF Downloads 319
902 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: microorganism, microfluidic, total internal reflection, lab on chip

Procedia PDF Downloads 277
901 A Multi Sensor Monochrome Video Fusion Using Image Quality Assessment

Authors: M. Prema Kumar, P. Rajesh Kumar

Abstract:

The increasing interest in image fusion (combining images of two or more modalities such as infrared and visible light radiation) has led to a need for accurate and reliable image assessment methods. This paper gives a novel approach of merging the information content from several videos taken from the same scene in order to rack up a combined video that contains the finest information coming from different source videos. This process is known as video fusion which helps in providing superior quality (The term quality, connote measurement on the particular application.) image than the source images. In this technique different sensors (whose redundant information can be reduced) are used for various cameras that are imperative for capturing the required images and also help in reducing. In this paper Image fusion technique based on multi-resolution singular value decomposition (MSVD) has been used. The image fusion by MSVD is almost similar to that of wavelets. The idea behind MSVD is to replace the FIR filters in wavelet transform with singular value decomposition (SVD). It is computationally very simple and is well suited for real time applications like in remote sensing and in astronomy.

Keywords: multi sensor image fusion, MSVD, image processing, monochrome video

Procedia PDF Downloads 572
900 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 477
899 Study, Design, Simulation and Fabrication of Microwave Slot Antenna

Authors: Khaled A. Madi, Rema A. Mousbahi, Mostafa B. Abuitbel, Abdualhakim O. Nagi

Abstract:

Antenna perhaps is the most important part of any communication system, it determines the overall efficiency and the direction of radiation of the system. Antennas vary in shape and size on a very wide range. For fast moving vehicles, the antenna should offer as litter aerodynamic resistance as possible. Slot antenna is best suited for this purpose. It offers very little aerodynamic resistance, compact, easy to feed and fabricate. This work presented in this paper deals with the investigation of a half wave slot antenna. The antenna has been studied, analyzed, designed, simulated, fabrication, and tested at the X-band. The field of antenna study is an extremely vast one, and to grasp the fundamentals, two pronged approaches have been used, and the focus was on the fabrication and testing of a slot waveguide directional antenna. Focuses on the design and simulation of slot antennas with an emphasis on optimization of a 9.1 GHz a rectangular waveguide have been used to feed slot antenna. A microwave fed slot antenna used in the communication lab was also simulated. The results have been presented and compared with the expected values, where a good agreement was achieved between the simulation and experimental results.

Keywords: microwave, slot antenna, simulation, fabrication

Procedia PDF Downloads 137
898 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems

Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair

Abstract:

Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.

Keywords: breeding blanket, corrosion protection, coating, plasma spray

Procedia PDF Downloads 307
897 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization

Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan

Abstract:

In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.

Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization

Procedia PDF Downloads 552