Search results for: regular network d-dimensional
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5838

Search results for: regular network d-dimensional

3738 Application of the MOOD Technique to the Steady-State Euler Equations

Authors: Gaspar J. Machado, Stéphane Clain, Raphael Loubère

Abstract:

The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part.

Keywords: Euler equations, finite volume, MOOD, steady-state

Procedia PDF Downloads 277
3737 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 91
3736 Area Efficient Carry Select Adder Using XOR Gate Design

Authors: Mahendrapal Singh Pachlaniya, Laxmi Kumre

Abstract:

The AOI (AND – OR- INVERTER) based design of XOR gate is proposed in this paper with less number of gates. This new XOR gate required four basic gates and basic gate include only AND, OR, Inverter (AOI). Conventional XOR gate required five basic gates. Ripple Carry Adder (RCA) used in parallel addition but propagation delay time is large. RCA replaced with Carry Select Adder (CSLA) to reduce propagation delay time. CSLA design with dual RCA considering carry = ‘0’ and carry = ‘1’, so it is not an area efficient adder. To make area efficient, modified CSLA is designed with single RCA considering carry = ‘0’ and another RCA considering carry = ‘1’ replaced with Binary to Excess 1 Converter (BEC). Now replacement of conventional XOR gate by new design of XOR gate in modified CSLA reduces much area compared to regular CSLA and modified CSLA.

Keywords: CSLA, BEC, XOR gate, area efficient

Procedia PDF Downloads 361
3735 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 134
3734 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 414
3733 Exploring Cardiovascular and Behavioral Impacts of Aerobic Exercise: A ‎Moroccan Perspective

Authors: Ahmed Boujdad

Abstract:

‎ Morocco, a North African nation known for its rich culture and diverse landscapes, is facing evolving challenges related to cardiovascular health and behavioral well-being. Against this backdrop, the paper aims to spotlight the insights emerging from Moroccan research into the impacts of aerobic exercise on cardiovascular physiology and psychological outcomes. Presentations will encompass a range of topics, including exercise-induced adaptations in heart function, blood pressure management, and vascular health specific to the Moroccan population. A notable focus of the paper will be the examination of how aerobic exercise intertwines with Moroccan behavioral patterns and sociocultural factors. The research will delve into the links between regular exercise and its potential to alleviate stress, anxiety, and depression in the Moroccan context. This exploration extends to the role of exercise in bolstering the cultural fabric of Moroccan society, enhancing community engagement, and promoting a sense of well-being.

Keywords: event-related potential‎, executive function, physical activity, kinesiology

Procedia PDF Downloads 82
3732 Building a Dynamic News Category Network for News Sources Recommendations

Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee

Abstract:

It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.

Keywords: news category, category network, news sources, ranking

Procedia PDF Downloads 386
3731 Attitudes towards Recreation: An Empirical Study of Youth’s Recreation Development in Bida-Nigeria

Authors: Kingsley Ononogbo, Ashiru Bello

Abstract:

The purpose of this study is to determine the factors responsible for the inclination of the youths of Bida to passive recreation, with a view to finding out whether their occupations influence their attitudes towards active recreation. Using the 5-point Likert scale, a total number of 267 participants were drawn from the two major wards in Bida town. They are Cheniyan and Nassarafu. Study evidence revealed that youths were constrained from participating in active recreation due to preoccupation with family responsibilities and lack of their choices of recreational facilities. The result of the Chi Square Test showed that the youths had positive attitudes towards physical exercises, while the Spearman’s Correlation (r=0.21) signifies a positive but weak correlation. The P- value, however, equals .7610 which is greater than 0.05 and, so significant. The study concluded by suggesting regular enlightenment programmes, focusing on the values of participating in active recreation, and building and maintenance of desired neighborhood recreation facilities for youths, as a measure to encourage them to take part in the active form of recreation.

Keywords: attitudes, Bida, recreation development, recreation of youth

Procedia PDF Downloads 343
3730 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 140
3729 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid

Authors: Eyad Almaita

Abstract:

In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.

Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption

Procedia PDF Downloads 345
3728 Collective Intelligence-Based Early Warning Management for Agriculture

Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin

Abstract:

The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.

Keywords: agricultural engineering, warning systems, social network services, context awareness

Procedia PDF Downloads 382
3727 Happiness, Media and Sustainability of Communities in Donkeaw, Mearim District, Chiang Mai, Thailand

Authors: Panida Jongsuksomsakul

Abstract:

This study of the ‘happiness’ and ‘sustainability’ in the community of Donkeaw, Amphoe Mae Rim, Chiang Mai Province during the non-election period in Thailand, noted that their happiness levels are in the middle-average range. This was found using a mixed approach of qualitative and quantitative methods (N = 386, α = 0.05). The study explores indicators for six aspects of well-being and happiness, including, good local governance, administrative support for the health system that maintains people’s mental and physical health, environment and weather, job security and a regular income aids them in managing a sustainable lifestyle. The impact of economic security and community relationships on social and cultural capital, and the way these aspects impact on the life style of the community, affects the sustainable well-being of people. Moreover, living with transparency and participatory communication led to diverse rewards in many areas.

Keywords: communication, happiness, well-being, Donkeaw community, social and cultural capital

Procedia PDF Downloads 234
3726 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)

Authors: Juzhong Tan, William Kerr

Abstract:

Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.

Keywords: artificial neutron network, cocoa bean, electronic nose, roasting

Procedia PDF Downloads 234
3725 Tourism as Economic Resource for Protecting the Landscape: Introducing Touristic Initiatives in Coastal Protected Areas of Albania

Authors: Enrico Porfido

Abstract:

The paper aims to investigate the relation between landscape and tourism, with a special focus on coastal protected areas of Albania. The relationship between tourism and landscape is bijective: There is no tourism without landscape attractive features and on the other side landscape needs economic resources to be conserved and protected. The survival of each component is strictly related to the other one. Today, the Albanian protected areas appear as isolated islands, too far away from each other to build an efficient network and to avoid waste in terms of energy, economy and working force. This study wants to stress out the importance of cooperation in terms of common strategies and the necessity of introducing a touristic sustainable model in Albania. Comparing the protection system laws of the neighbor countries of the Adriatic-Ionian region and through a desk review on the best practices of protected areas that benefit from touristic activities, the study proposes the creation of the Albanian Riviera Landscape Park. This action will impact positively the whole southern Albania territory, introducing a sustainable tourism network that aims to valorize the local heritage and to stop the coastal exploitation processes. The main output is the definition of future development scenarios in Albania with the establishment of new protected areas and the introduction of touristic initiatives.

Keywords: Adriatic-Ionian region, protected areas, tourism for landscape, sustainable tourism

Procedia PDF Downloads 280
3724 Hybrid Diagrid System for High-Rise Buildings

Authors: Seyed Saeid Tabaee, Mohammad Afshari, Bahador Ziaeemehr, Omid Bahar

Abstract:

Nowadays, using modern structural systems with specific capabilities, like Diagrid, is emerging around the world. In this paper, a new resisting system, a combination of both Diagrid axial behavior and proper seismic performance of regular moment frames in tall buildings, named 'Hybrid Diagrid' is presented. The scaled specimen of the suggested hybrid system was built and tested using IIEES shaking table. The natural frequency and structural response of the analytical model were updated with the real experimental results. In order to compare its performance with the traditional Diagrid and moment frame systems, time history analysis was carried out. Extensive analysis shows the efficient seismic responses and economical behavior of Hybrid Diagrid structure with respect to the other two systems.

Keywords: hybrid diagrid system, moment frame, shaking table, tall buildings, time history analysis

Procedia PDF Downloads 215
3723 Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications

Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Ali Kadri, Said Maouche, Hayet Khayati Ammar, Ahmed Braham

Abstract:

The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region.

Keywords: NW Tunisia, archaeoseismology, earthquake archaeological effect, bulla regia - Chemtou, seismotectonic, neotectonic fault

Procedia PDF Downloads 49
3722 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 280
3721 Part of Geomatics Technology in the Capability to Implement an on Demand Transport in Oran Wilaya (the Northwestern of Algeria)

Authors: N. Brahmia

Abstract:

The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria. As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS)… so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.

Keywords: geomatics, GIS, ODT, transport systems

Procedia PDF Downloads 600
3720 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.

Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable

Procedia PDF Downloads 276
3719 Numerical Study on the EHD Pump with a Recirculating Channel

Authors: Dong Sik Cho, Yong Kweon Suh

Abstract:

Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.

Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage

Procedia PDF Downloads 301
3718 Assessing Mobile Robotic Telepresence Based On Measures of Social Telepresence

Authors: A. Bagherzadhalimi, E. Di Maria

Abstract:

The feedbacks obtained regarding the sense of presence from pilot users operating a Mobile Robotic presence (MRP) system to visit a simulated museum are reported in this paper. The aim is to investigate how much the perception of system’s usefulness and ease of use is affected by operators’ sense of social telepresence (presence) in the remote location. Therefore, scenarios of visiting a museum are simulated and the user operators are supposed to perform some regular tasks inside the remote environment including interaction with local users, navigation and visiting the artworks. Participants were divided into two groups, those who had previous experience of operation and interaction with a MRP system and those who never had experience. Based on the results, both groups provided different feedbacks. Moreover, there was a significant association between user’s sense of presence and their perception of system usefulness and ease of use.

Keywords: mobile robotic telepresence, museum, social telepresence, usability test

Procedia PDF Downloads 401
3717 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 153
3716 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 160
3715 Joint Physical Custody: Lessons from the European Union

Authors: Katarzyna Kamińska

Abstract:

When thinking about custodial arrangements after divorce or separation, there has been a shift from sole custody, particularly maternal preference, to joint physical custody. In many Western countries, an increasing of children with separated parents have joint physical custody, which is believed to be in the best interests of the child, as children can maintain personal relations and direct contact with both parents on a regular basis. The aim of the article is to examine joint physical custody, both from the perspective of the binding legal instruments that are relevant to joint physical custody, the Principles of European Family Law drafted by the CEFL, as well as the international research on this matter. The thesis underlying this paper is that joint physical custody is in itself neither good nor bad, and it depends on how the arrangements are managed by the parents. The paper includes a reflection on joint physical custody in the face of the COVID-19 crisis. The results indicate that in normal circumstances, joint physical custody demands broad communication, and now it times of crisis, we need over-communication about children and plans. Only a very tight and coordinated co-parenting plan make the whole family safer.

Keywords: joint physical custody, co-parenting, child welfare, COVID-19

Procedia PDF Downloads 246
3714 Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model

Authors: Priyanka Agrawal, Janou Koskamp, Amir Raoof, Mariette Wolthers

Abstract:

Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation.

Keywords: single pore, reactive transport, calcite system, moving boundary

Procedia PDF Downloads 374
3713 On the Study of All Waterloo Automaton Semilattices

Authors: Mikhail Abramyan, Boris Melnikov

Abstract:

The aim is to study the set of subsets of grids of the Waterloo automaton and the set of covering automata defined by the grid subsets. The study was carried out using the library for working with nondeterministic finite automata NFALib implemented by one of the authors (M. Abramyan) in C#. The results are regularities obtained when considering semilattices of covering automata for the Waterloo automaton. A complete description of the obtained semilattices from the point of view of equivalence of the covering automata to the original Waterloo automaton is given, the criterion of equivalence of the covering automaton to the Waterloo automaton in terms of properties of the subset of grids defining the covering automaton is formulated. The relevance of the subject area under consideration is due to the need to research a set of regular languages and, in particular, a description of their various subclasses. Also relevant are the problems that may arise in some subclasses. This will give, among other things, the possibility of describing new algorithms for the equivalent transformation of nondeterministic finite automata.

Keywords: nondeterministic finite automata, universal automaton, grid, covering automaton, equivalent transformation algorithms, the Waterloo automaton

Procedia PDF Downloads 87
3712 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network

Authors: Amit Verma, Pardeep Kaur

Abstract:

In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.

Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval

Procedia PDF Downloads 378
3711 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 322
3710 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks

Authors: A. Khan, H. Mahmood

Abstract:

In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.

Keywords: energy holes, interference, routing, underwater

Procedia PDF Downloads 409
3709 Exploring People’s Perceptions of Indoor Plants through the Lens of Para-Social Relationships Theory

Authors: Ivashkina Elizaveta

Abstract:

Despite significant research on the positive effects of houseplants on human life, we know almost nothing about how people perceive plants and their attitudes toward them. The following study seeks to fill this void by applying para-social relationships (PSRs) theory to analyze individuals’ perceptions of houseplants. We reveal how people form and maintain PSRs with indoor plants using 15 semi-structured in-depth interviews with Russian-speaking university students who had a close bond with their indoor plants when the study was conducted. The findings indicate that the process of forming PSRs is influenced by factors such as exposure and homophily. Students develop a sense of companionship with their indoor plants, which contributes to establishing a PSR. Participants reported engaging in various activities, such as regular care, communication, and interaction with their plants. The insights gained from this research have implications for horticultural therapy, environmental psychology, and indoor gardening practices.

Keywords: para-social relationships, plants, people-plant interaction, indoor plants, qualitative research

Procedia PDF Downloads 66