Search results for: linguistic capabilities
23 Bringing Together Student Collaboration and Research Opportunities to Promote Scientific Understanding and Outreach Through a Seismological Community
Authors: Michael Ray Brunt
Abstract:
China has been the site of some of the most significant earthquakes in history; however, earthquake monitoring has long been the provenance of universities and research institutions. The China Digital Seismographic Network was initiated in 1983 and improved significantly during 1992-1993. Data from the CDSN is widely used by government and research institutions, and, generally, this data is not readily accessible to middle and high school students. An educational seismic network in China is needed to provide collaboration and research opportunities for students and engaging students around the country in scientific understanding of earthquake hazards and risks while promoting community awareness. In 2022, the Tsinghua International School (THIS) Seismology Team, made up of enthusiastic students and facilitated by two experienced teachers, was established. As a group, the team’s objective is to install seismographs in schools throughout China, thus creating an educational seismic network that shares data from the THIS Educational Seismic Network (THIS-ESN) and facilitates collaboration. The THIS-ESN initiative will enhance education and outreach in China about earthquake risks and hazards, introduce seismology to a wider audience, stimulate interest in research among students, and develop students’ programming, data collection and analysis skills. It will also encourage and inspire young minds to pursue science, technology, engineering, the arts, and math (STEAM) career fields. The THIS-ESN utilizes small, low-cost RaspberryShake seismographs as a powerful tool linked into a global network, giving schools and the public access to real-time seismic data from across China, increasing earthquake monitoring capabilities in the perspective areas and adding to the available data sets regionally and worldwide helping create a denser seismic network. The RaspberryShake seismograph is compatible with free seismic data viewing platforms such as SWARM, RaspberryShake web programs and mobile apps are designed specifically towards teaching seismology and seismic data interpretation, providing opportunities to enhance understanding. The RaspberryShake is powered by an operating system embedded in the Raspberry Pi, which makes it an easy platform to teach students basic computer communication concepts by utilizing processing tools to investigate, plot, and manipulate data. THIS Seismology Team believes strongly in creating opportunities for committed students to become part of the seismological community by engaging in analysis of real-time scientific data with tangible outcomes. Students will feel proud of the important work they are doing to understand the world around them and become advocates spreading their knowledge back into their homes and communities, helping to improve overall community resilience. We trust that, in studying the results seismograph stations yield, students will not only grasp how subjects like physics and computer science apply in real life, and by spreading information, we hope students across the country can appreciate how and why earthquakes bear on their lives, develop practical skills in STEAM, and engage in the global seismic monitoring effort. By providing such an opportunity to schools across the country, we are confident that we will be an agent of change for society.Keywords: collaboration, outreach, education, seismology, earthquakes, public awareness, research opportunities
Procedia PDF Downloads 7322 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan
Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen
Abstract:
In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.Keywords: automation, integration, value, communication
Procedia PDF Downloads 14721 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant
Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro
Abstract:
The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.Keywords: acoustic impact, industrial noise, mitigation, rocket noise
Procedia PDF Downloads 14820 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment
Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley
Abstract:
Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment
Procedia PDF Downloads 14119 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting
Authors: Eylem Tas
Abstract:
This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations
Procedia PDF Downloads 6018 Understanding the Impact of Resilience Training on Cognitive Performance in Military Personnel
Authors: Haji Mohammad Zulfan Farhi Bin Haji Sulaini, Mohammad Azeezudde’en Bin Mohd Ismaon
Abstract:
The demands placed on military athletes extend beyond physical prowess to encompass cognitive resilience in high-stress environments. This study investigates the effects of resilience training on the cognitive performance of military athletes, shedding light on the potential benefits and implications for optimizing their overall readiness. In a rapidly evolving global landscape, armed forces worldwide are recognizing the importance of cognitive resilience alongside physical fitness. The study employs a mixed-methods approach, incorporating quantitative cognitive assessments and qualitative data from military athletes undergoing resilience training programs. Cognitive performance is evaluated through a battery of tests, including measures of memory, attention, decision-making, and reaction time. The participants, drawn from various branches of the military, are divided into experimental and control groups. The experimental group undergoes a comprehensive resilience training program, while the control group receives traditional physical training without a specific focus on resilience. The initial findings indicate a substantial improvement in cognitive performance among military athletes who have undergone resilience training. These improvements are particularly evident in domains such as attention and decision-making. The experimental group demonstrated enhanced situational awareness, quicker problem-solving abilities, and increased adaptability in high-stress scenarios. These results suggest that resilience training not only bolsters mental toughness but also positively impacts cognitive skills critical to military operations. In addition to quantitative assessments, qualitative data is collected through interviews and surveys to gain insights into the subjective experiences of military athletes. Preliminary analysis of these narratives reveals that participants in the resilience training program report higher levels of self-confidence, emotional regulation, and an improved ability to manage stress. These psychological attributes contribute to their enhanced cognitive performance and overall readiness. Moreover, this study explores the potential long-term benefits of resilience training. By tracking participants over an extended period, we aim to assess the durability of cognitive improvements and their effects on overall mission success. Early results suggest that resilience training may serve as a protective factor against the detrimental effects of prolonged exposure to stressors, potentially reducing the risk of burnout and psychological trauma among military athletes. This research has significant implications for military organizations seeking to optimize the performance and well-being of their personnel. The findings suggest that integrating resilience training into the training regimen of military athletes can lead to a more resilient and cognitively capable force. This, in turn, may enhance mission success, reduce the risk of injuries, and improve the overall effectiveness of military operations. In conclusion, this study provides compelling evidence that resilience training positively impacts the cognitive performance of military athletes. The preliminary results indicate improvements in attention, decision-making, and adaptability, as well as increased psychological resilience. As the study progresses and incorporates long-term follow-ups, it is expected to provide valuable insights into the enduring effects of resilience training on the cognitive readiness of military athletes, contributing to the ongoing efforts to optimize military personnel's physical and mental capabilities in the face of ever-evolving challenges.Keywords: military athletes, cognitive performance, resilience training, cognitive enhancement program
Procedia PDF Downloads 8117 TeleEmergency Medicine: Transforming Acute Care through Virtual Technology
Authors: Ashley L. Freeman, Jessica D. Watkins
Abstract:
TeleEmergency Medicine (TeleEM) is an innovative approach leveraging virtual technology to deliver specialized emergency medical care across diverse healthcare settings, including internal acute care and critical access hospitals, remote patient monitoring, and nurse triage escalation, in addition to external emergency departments, skilled nursing facilities, and community health centers. TeleEM represents a significant advancement in the delivery of emergency medical care, providing healthcare professionals the capability to deliver expertise that closely mirrors in-person emergency medicine, exceeding geographical boundaries. Through qualitative research, the extension of timely, high-quality care has proven to address the critical needs of patients in remote and underserved areas. TeleEM’s service design allows for the expansion of existing services and the establishment of new ones in diverse geographic locations. This ensures that healthcare institutions can readily scale and adapt services to evolving community requirements by leveraging on-demand (non-scheduled) telemedicine visits through the deployment of multiple video solutions. In terms of financial management, TeleEM currently employs billing suppression and subscription models to enhance accessibility for a wide range of healthcare facilities. Plans are in motion to transition to a billing system routing charges through a third-party vendor, further enhancing financial management flexibility. To address state licensure concerns, a patient location verification process has been integrated through legal counsel and compliance authorities' guidance. The TeleEM workflow is designed to terminate if the patient is not physically located within licensed regions at the time of the virtual connection, alleviating legal uncertainties. A distinctive and pivotal feature of TeleEM is the introduction of the TeleEmergency Medicine Care Team Assistant (TeleCTA) role. TeleCTAs collaborate closely with TeleEM Physicians, leading to enhanced service activation, streamlined coordination, and workflow and data efficiencies. In the last year, more than 800 TeleEM sessions have been conducted, of which 680 were initiated by internal acute care and critical access hospitals, as evidenced by quantitative research. Without this service, many of these cases would have necessitated patient transfers. Barriers to success were examined through thorough medical record review and data analysis, which identified inaccuracies in documentation leading to activation delays, limitations in billing capabilities, and data distortion, as well as the intricacies of managing varying workflows and device setups. TeleEM represents a transformative advancement in emergency medical care that nurtures collaboration and innovation. Not only has advanced the delivery of emergency medicine care virtual technology through focus group participation with key stakeholders, rigorous attention to legal and financial considerations, and the implementation of robust documentation tools and the TeleCTA role, but it’s also set the stage for overcoming geographic limitations. TeleEM assumes a notable position in the field of telemedicine by enhancing patient outcomes and expanding access to emergency medical care while mitigating licensure risks and ensuring compliant billing.Keywords: emergency medicine, TeleEM, rural healthcare, telemedicine
Procedia PDF Downloads 8416 Branding Capability Developed from Country-Specific and Firm-Specific Resources for Internationalizing Small and Medium Enterprises
Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong
Abstract:
There has recently been a notable rise in the number of emerging-market industrial small and medium-sized enterprises (SMEs) that have managed to upgrade their operations. Evolving from original equipment manufacturing (OEM) into value-added original or own brand manufacturing (OBM) in such firms represents a specific process of internationalization. The OEM-OBM upgrade requires development of a firm’s own brand. In this respect, the extant literature points out that emerging-market industrial marketers (latecomers) have developed some marketing capabilities, of which branding has been identified as one of the most important. In specific, an industrial non-brand marketer (OEM) marks the division of labor between manufacturing and branding (as part of marketing). In light of this discussion, this research argues that branding capability plays a critical role in supporting the evolution of manufacture upgrade. This is because a smooth transformation from OEM to OBM entails the establishment of strong brands through which branding capability is developed. Accordingly, branding capability can be exemplified as a series of processes and practices in relation to mobilizing branding resources and orchestrating branding activities, which will result in the establishment of business relationships, greater acceptance of business partners (channels, suppliers), and increased industrial brand equity in the firm as key resource advantages). For the study purpose, Taiwan was chosen as the research context, representing a typical case that exemplifies the industrial development path of more-established emerging markets, namely, transformation from OEM to OBM. This research adopted a two-phase research design comprising exploratory (a qualitative study) and confirmatory approaches (a survey study) The findings show that: Country-specific advantage is positively related to branding capability for internationalizing SMEs. Firm-specific advantage is positively related to branding capability for internationalizing SMEs. Hsing-Hua Stella Chang is Assistant Professor with National Taichung University of Education, International Master of Business Administration, (Yingcai Campus) No.227, Minsheng Rd., West Dist., Taichung City 40359, Taiwan, R.O.C. (phone: 886-22183612; e-mail: [email protected]). Mong-Ching Lin is PhD candidate with National Sun Yat-Sen University, Department of Business Management, 70 Lien-hai Rd., Kaohsiung 804, Taiwan, R.O.C. (e-mail: [email protected]). Cher-Min Fong is Full Professor with National Sun Yat-Sen University, Department of Business Management, 70 Lien-hai Rd., Kaohsiung 804, Taiwan, R.O.C. (e-mail: [email protected]). Branding capability is positively related to international performance for internationalizing SMEs. This study presents a pioneering effort to distinguish industrial brand marketers from non-brand marketers in exploring the role of branding capability in the internationalizing small and medium-sized industrial brand marketers from emerging markets. Specifically, when industrial non-brand marketers (OEMs) enter into a more advanced stage of internationalization (i.e., OBM), they must overcome disadvantages (liabilities of smallness, foreignness, outsidership) that do not apply in the case of incumbent developed-country MNEs with leading brands. Such critical differences mark the urgency and significance of distinguishing industrial brand marketers from non-brand marketers on issues relating to their value-adding branding and marketing practices in international markets. This research thus makes important contributions to the international marketing, industrial branding, and SME internationalization literature.Keywords: brand marketers, branding capability, emerging markets, SME internationalization
Procedia PDF Downloads 8115 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP
Authors: Yannick Willemin
Abstract:
Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing
Procedia PDF Downloads 9614 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)
Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan
Abstract:
Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification
Procedia PDF Downloads 31813 The Path to Ruthium: Insights into the Creation of a New Element
Authors: Goodluck Akaoma Ordu
Abstract:
Ruthium (Rth) represents a theoretical superheavy element with an atomic number of 119, proposed within the context of advanced materials science and nuclear physics. The conceptualization of Rth involves theoretical frameworks that anticipate its atomic structure, including a hypothesized stable isotope, Rth-320, characterized by 119 protons and 201 neutrons. The synthesis of Ruthium (Rth) hinges on intricate nuclear fusion processes conducted in state-of-the-art particle accelerators, notably utilizing Calcium-48 (Ca-48) as a projectile nucleus and Einsteinium-253 (Es-253) as a target nucleus. These experiments aim to induce fusion reactions that yield Ruthium isotopes, such as Rth-301, accompanied by neutron emission. Theoretical predictions outline various physical and chemical properties attributed to Ruthium (Rth). It is envisaged to possess a high density, estimated at around 25 g/cm³, with melting and boiling points anticipated to be exceptionally high, approximately 4000 K and 6000 K, respectively. Chemical studies suggest potential oxidation states of +2, +3, and +4, indicating a versatile reactivity, particularly with halogens and chalcogens. The atomic structure of Ruthium (Rth) is postulated to feature an electron configuration of [Rn] 5f^14 6d^10 7s^2 7p^2, reflecting its position in the periodic table as a superheavy element. However, the creation and study of superheavy elements like Ruthium (Rth) pose significant challenges. These elements typically exhibit very short half-lives, posing difficulties in their stabilization and detection. Research efforts are focused on identifying the most stable isotopes of Ruthium (Rth) and developing advanced detection methodologies to confirm their existence and properties. Specialized detectors are essential in observing decay patterns unique to Ruthium (Rth), such as alpha decay or fission signatures, which serve as key indicators of its presence and characteristics. The potential applications of Ruthium (Rth) span across diverse technological domains, promising innovations in energy production, material strength enhancement, and sensor technology. Incorporating Ruthium (Rth) into advanced energy systems, such as the Arc Reactor concept, could potentially amplify energy output efficiencies. Similarly, integrating Ruthium (Rth) into structural materials, exemplified by projects like the NanoArc gauntlet, could bolster mechanical properties and resilience. Furthermore, Ruthium (Rth)--based sensors hold promise for achieving heightened sensitivity and performance in various sensing applications. Looking ahead, the study of Ruthium (Rth) represents a frontier in both fundamental science and applied research. It underscores the quest to expand the periodic table and explore the limits of atomic stability and reactivity. Future research directions aim to delve deeper into Ruthium (Rth)'s atomic properties under varying conditions, paving the way for innovations in nanotechnology, quantum materials, and beyond. The synthesis and characterization of Ruthium (Rth) stand as a testament to human ingenuity and technological advancement, pushing the boundaries of scientific understanding and engineering capabilities. In conclusion, Ruthium (Rth) embodies the intersection of theoretical speculation and experimental pursuit in the realm of superheavy elements. It symbolizes the relentless pursuit of scientific excellence and the potential for transformative technological breakthroughs. As research continues to unravel the mysteries of Ruthium (Rth), it holds the promise of reshaping materials science and opening new frontiers in technological innovation.Keywords: superheavy element, nuclear fusion, bombardment, particle accelerator, nuclear physics, particle physics
Procedia PDF Downloads 3912 Social Enterprises over Microfinance Institutions: The Challenges of Governance and Management
Authors: Dean Sinković, Tea Golja, Morena Paulišić
Abstract:
Upon the end of the vicious war in former Yugoslavia in 1995, international development community widely promoted microfinance as the key development framework to eradicate poverty, create jobs, increase income. Widespread claims were made that microfinance institutions would play vital role in creating a bedrock for sustainable ‘bottom-up’ economic development trajectory, thus, helping newly formed states to find proper way from economic post-war depression. This uplifting neoliberal narrative has no empirical support in the Republic of Croatia. Firstly, the type of enterprises created via microfinance sector are small, unskilled, labor intensive, no technology and with huge debt burden. This results in extremely high failure rates of microenterprises and poor individuals plunging into even deeper poverty, acute indebtedness and social marginalization. Secondly, evidence shows that microcredit is exact reflection of dangerous and destructive sub-prime lending model with ‘boom-to-bust’ scenarios in which benefits are solely extracted by the tiny financial and political elite working around the microfinance sector. We argue that microcredit providers are not proper financial structures through which developing countries should look way out of underdevelopment and poverty. In order to achieve sustainable long-term growth goals, public policy needs to focus on creating, supporting and facilitating the small and mid-size enterprises development. These enterprises should be technically sophisticated, capable of creating new capabilities and innovations, with managerial expertise (skills formation) and inter-connected with other organizations (i.e. clusters, networks, supply chains, etc.). Evidence from South-East Europe suggest that such structures are not created via microfinance model but can be fostered through various forms of social enterprises. Various legal entities may operate as social enterprises: limited liability private company, limited liability public company, cooperative, associations, foundations, institutions, Mutual Insurances and Credit union. Our main hypothesis is that cooperatives are potential agents of social and economic transformation and community development in the region. Financial cooperatives are structures that can foster more efficient allocation of financial resources involving deeper democratic arrangements and more socially just outcomes. In Croatia, pioneers of the first social enterprises were civil society organizations whilst forming a separated legal entity. (i.e. cooperatives, associations, commercial companies working on the principles of returning the investment to the founder). Ever since 1995 cooperatives in Croatia have not grown by pursuing their own internal growth but mostly by relying on external financial support. The greater part of today’s registered cooperatives tend to be agricultural (39%), followed by war veterans cooperatives (38%) and others. There are no financial cooperatives in Croatia. Due to the above mentioned we look at the historical developments and the prevailing social enterprises forms and discuss their advantages and disadvantages as potential agents for social and economic transformation and community development in the region. There is an evident lack of understanding of this business model and of its potential for social and economic development followed by an unfavorable institutional environment. Thus, we discuss the role of governance and management in the formation of social enterprises in Croatia, stressing the challenges for the governance of the country’s social enterprise movement.Keywords: financial cooperatives, governance and management models, microfinance institutions, social enterprises
Procedia PDF Downloads 27711 Low-Cost Aviation Solutions to Strengthen Counter-Poaching Efforts in Kenya
Authors: Kuldeep Rawat, Michael O'Shea, Maureen McGough
Abstract:
The paper will discuss a National Institute of Justice (NIJ) funded project to provide cost-effective aviation technologies and research to support counter-poaching operations related to endangered, protected, and/or regulated wildlife. The goal of this project is to provide cost-effective aviation technology and research support to Kenya Wildlife Service (KWS) in their counter-poaching efforts. In pursuit of this goal, Elizabeth City State University (ECSU) is assisting the National Institute of Justice (NIJ) in enhancing the Kenya Wildlife Service’s aviation technology and related capacity to meet its counter-poaching mission. Poaching, at its core, is systemic as poachers go to the most extreme lengths to kill high target species such as elephant and rhino. These high target wildlife species live in underdeveloped or impoverished nations, where poachers find fewer barriers to their operations. In Kenya, with fifty-nine (59) parks and reserves, spread over an area of 225,830 square miles (584,897 square kilometers) adequate surveillance on the ground is next to impossible. Cost-effective aviation surveillance technologies, based on a comprehensive needs assessment and operational evaluation, are needed to curb poaching and effectively prevent wildlife trafficking. As one of the premier law enforcement Air Wings in East Africa, KWS plays a crucial role in Kenya, not only in counter-poaching and wildlife conservation efforts, but in aerial surveillance, counterterrorism and national security efforts as well. While the Air Wing has done, a remarkable job conducting aerial patrols with limited resources, additional aircraft and upgraded technology should significantly advance the Air Wing’s ability to achieve its wildlife protection mission. The project includes: (i) Needs Assessment of the KWS Air Wing, to include the identification of resources, current and prospective capacity, operational challenges and priority goals for expansion, (ii) Acquisition of Low-Cost Aviation Technology to meet priority needs, and (iii) Operational Evaluation of technology performance, with a focus on implementation and effectiveness. The Needs Assessment reflects the priorities identified through two site visits to the KWS Air Wing in Nairobi, Kenya, as well as field visits to multiple national parks receiving aerial support and interviewing/surveying KWS Air wing pilots and leadership. Needs Assessment identified some immediate technology needs that includes, GPS with upgrades, including weather application, Night flying capabilities, to include runway lights and night vision technology, Cameras and surveillance equipment, Flight tracking system and/or Emergency Position Indicating Radio Beacon, Lightweight ballistic-resistant body armor, and medical equipment, to include a customized stretcher and standard medical evacuation equipment. Results of this assessment, along with significant input from the KWS Air Wing, will guide the second phase of this project: technology acquisition. Acquired technology will then be evaluated in the field, with a focus on implementation and effectiveness. Results will ultimately be translated for any rural or tribal law enforcement agencies with comparable aerial surveillance missions and operational environments, and jurisdictional challenges, seeking to implement low-cost aviation technology. Results from Needs Assessment phase, including survey results and our ongoing technology acquisition and baseline operational evaluation will be discussed in the paper.Keywords: aerial surveillance mission, aviation technology, counter-poaching, wildlife protection
Procedia PDF Downloads 27610 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 739 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star
Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu
Abstract:
The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership
Procedia PDF Downloads 2438 Examining Language as a Crucial Factor in Determining Academic Performance: A Case of Business Education in Hong Kong
Authors: Chau So Ling
Abstract:
I.INTRODUCTION: Educators have always been interested in exploring factors that contribute to students’ academic success. It is beyond question that language, as a medium of instruction, will affect student learning. This paper tries to investigate whether language is a crucial factor in determining students’ achievement in their studies. II. BACKGROUND AND SIGNIFICANCE OF STUDY: The issue of using English as a medium of instruction in Hong Kong is a special topic because Hong Kong is a post-colonial and international city which a British colony. In such a specific language environment, researchers in the education field have always been interested in investigating students’ language proficiency and its relation to academic achievement and other related educational indicators such as motivation to learn, self-esteem, learning effectiveness, self-efficacy, etc. Along this line of thought, this study specifically focused on business education. III. METHODOLOGY: The methodology in this study involved two sequential stages, namely, a focus group interview and a data analysis. The whole study was directed towards both qualitative and quantitative aspects. The subjects of the study were divided into two groups. For the first group participating in the interview, a total of ten high school students were invited. They studied Business Studies, and their English standard was varied. The theme of the discussion was “Does English affect your learning and examination results of Business Studies?” The students were facilitated to discuss the extent to which English standard affected their learning of Business subjects and requested to rate the correlation between English and performance of Business Studies on a five-point scale. The second stage of the study involved another group of students. They were high school graduates who had taken the public examination for entering universities. A database containing their public examination results for different subjects has been obtained for the purpose of statistical analysis. Hypotheses were tested and evidence was obtained from the focus group interview to triangulate the findings. V. MAJOR FINDINGS AND CONCLUSION: By sharing of personal experience, the discussion of focus group interviews indicated that higher English standards could help the students achieve better learning and examination performance. In order to end the interview, the students were asked to indicate the correlation between English proficiency and performance of Business Studies on a five-point scale. With point one meant least correlated, ninety percent of the students gave point four for the correlation. The preliminary results illustrated that English plays an important role in students’ learning of Business Studies, or at least this was what the students perceived, which set the hypotheses for the study. After conducting the focus group interview, further evidence had to be gathered to support the hypotheses. The data analysis part tried to find out the relationship by correlating the students’ public examination results of Business Studies and levels of English standard. The results indicated a positive correlation between their English standard and Business Studies examination performance. In order to highlight the importance of the English language to the study of Business Studies, the correlation between the public examination results of other non-business subjects was also tested. Statistical results showed that language does play a role in affecting students’ performance in studying Business subjects than the other subjects. The explanation includes the dynamic subject nature, examination format and study requirements, the specialist language used, etc. Unlike Science and Geography, students in their learning process might find it more difficult to relate business concepts or terminologies to their own experience, and there are not many obvious physical or practical activities or visual aids to serve as evidence or experiments. It is well-researched in Hong Kong that English proficiency is a determinant of academic success. Other research studies verified such a notion. For example, research revealed that the more enriched the language experience, the better the cognitive performance in conceptual tasks. The ability to perform this kind of task is particularly important to students taking Business subjects. Another research was carried out in the UK, which was geared towards identifying and analyzing the reasons for underachievement across a cohort of GCSE students taking Business Studies. Results showed that weak language ability was the main barrier to raising students’ performance levels. It seemed that the interview result was successfully triangulated with data findings. Although education failure cannot be restricted to linguistic failure and language is just one of the variables to play in determining academic achievement, it is generally accepted that language does affect students’ academic performance. It is just a matter of extent. This paper provides recommendations for business educators on students’ language training and sheds light on more research possibilities in this area.Keywords: academic performance, language, learning, medium of instruction
Procedia PDF Downloads 1227 Top Skills That Build Cultures at Organizations
Authors: Priyanka Botny Srinath, Alessandro Suglia, Mel McKendrick
Abstract:
Background: Organizational cultural studies integrate sociology and anthropology, portraying man as a creator of symbols, languages, beliefs, and ideologies -essentially, a creator and manager of meaning. In our research, we leverage analytical measures to discern whether an organization embodies a singular culture or a myriad of subcultures. Fast-forward to 2023, our research thesis focuses on digitally measuring culture, coining it as the "Work Culture Quotient." This entails conceptually mapping common experiential patterns to provide executives insights into the digital organization journey, aiding in understanding their current position and identifying future steps. Objectives: Finding the new age skills that help in defining the culture; understand the implications of post-COVID effects; derive a digital framework for measuring skillsets. Method: We conducted two comprehensive Delphi studies to distill essential insights. Delphi 1: Through a thematic analysis of interviews with 20 high-level leaders representing companies across diverse regions -India, Japan, the US, Canada, Morocco, and Uganda- we identified 20 key skills critical for cultivating a robust organizational culture. The skills are -influence, self-confidence, optimism, empathy, leadership, collaboration and cooperation, developing others, commitment, innovativeness, leveraging diversity, change management, team capabilities, self-control, digital communication, emotional awareness, team bonding, communication, problem solving, adaptability, and trustworthiness. Delphi 2: Subject matter experts were asked to complete a questionnaire derived from the thematic analysis in stage 1 to formalise themes and draw consensus amongst experts on the most important workplace skills. Results: The thematic analysis resulted in 20 workplace employee skills being identified. These skills were all included in the Delphi round 2 questionnaire. From the outputs, we analysed the data using R Studio for arriving at agreement and consensus, we also used sum of squares method to compare various agreements to extract various themes with a threshold of 80% agreements. This yielded three themes at over 80% agreement (leadership, collaboration and cooperation, communication) and three further themes at over 60% agreement (commitment, empathy, trustworthiness). From this, we selected five questionnaires to be included in the primary data collection phase, and these will be paired with the digital footprints to provide a workplace culture quotient. Implications: The findings from these studies bear profound implications for decision-makers, revolutionizing their comprehension of organizational culture. Tackling the challenge of mapping the digital organization journey involves innovative methodologies that probe not only external landscapes but also internal cultural dynamics. This holistic approach furnishes decision-makers with a nuanced understanding of their organizational culture and visualizes pivotal skills for employee growth. This clarity enables informed choices resonating with the organization's unique cultural fabric. Anticipated outcomes transcend mere individual cultural measurements, aligning with organizational goals to unveil a comprehensive view of culture, exposing artifacts and depth. Armed with this profound understanding, decision-makers gain tangible evidence for informed decision-making, strategically leveraging cultural strengths to cultivate an environment conducive to growth, innovation, and enduring success, ultimately leading to measurable outcomes.Keywords: leadership, cooperation, collaboration, teamwork, work culture
Procedia PDF Downloads 486 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent
Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar
Abstract:
Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.Keywords: artificial intelligence, trustworthiness, voice, adolescent
Procedia PDF Downloads 635 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 94 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems
Procedia PDF Downloads 2513 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor
Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini
Abstract:
Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance
Procedia PDF Downloads 2822 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 1301 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring
Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis
Abstract:
Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.Keywords: earth observation, monitoring, natural hazards, remote sensing
Procedia PDF Downloads 41