Search results for: achievement pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4900

Search results for: achievement pressure

2800 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics

Authors: Narin Salehiyan

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 81
2799 Deregulation of Thorium for Room Temperature Superconductivity

Authors: Dong Zhao

Abstract:

Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron pairing and electron lone pair, room temperature superconductivity, the special molecular configuration of thorium sulfide ThS

Procedia PDF Downloads 50
2798 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 160
2797 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: acetic acid, hydrogenation, operating condition, PtSn

Procedia PDF Downloads 356
2796 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 178
2795 Effect of Instructional Materials on Academic Performance in Heat Transfer Concept among Secondary School Physics Students in Fagge Educational Zone, Kano State, Nigeria

Authors: Shehu Aliyu

Abstract:

This study investigated the effects of instructional materials on academic achievement among senior secondary school students on the concept of Heat Transfer in physics in Fagge Educational Zone, Kano State Nigeria. The population consisted of SSII students from 10 public schools. Out of this, 87 students were randomly selected from which 24 males and 22 females formed the experimental group and 41 students as control group. A quasi experiential design with pretest and post-test for both the groups was adopted. Two research questions and null hypotheses guided the conduct of the study. The experimental group was exposed to teaching using instructional materials while the control group was taught using the normal lecture mode. Head Transfer Performance Test (HTPT) was used for data collection. The instrument was validated by experts in the science education field. A Pearson Product Moment Correlation (PPMC) was used to determine the reliability co-efficient and was found to be r=0.83. The research questions were answered using descriptive statistics while the hypotheses were tested at p≤ 0.05 level of significance using t-test. The result obtained from the data analysis showed that students in experimental group performed significantly better than those in the control group and that there was no significant difference in the academic performance between male and female students in the experimental group. Based on the findings of this study, it was recommended among others that the physics teachers should be receiving regular training on the importance of using instructional materials whether ready made or improved in their teaching.

Keywords: heat transfer, physics, instructional materials, academic performance

Procedia PDF Downloads 183
2794 Numerical Reproduction of Hemodynamic Change Induced by Acupuncture to ST-36

Authors: Takuya Suzuki, Atsushi Shirai, Takashi Seki

Abstract:

Acupuncture therapy is one of the treatments in traditional Chinese medicine. Recently, some reports have shown the effectiveness of acupuncture. However, its full acceptance has been hindered by the lack of understanding on mechanism of the therapy. Acupuncture applied to Zusanli (ST-36) enhances blood flow volume in superior mesenteric artery (SMA), yielding peripheral vascular resistance – regulated blood flow of SMA dominated by the parasympathetic system and inhibition of sympathetic system. In this study, a lumped-parameter approximation model of blood flow in the systemic arteries was developed. This model was extremely simple, consisting of the aorta, carotid arteries, arteries of the four limbs and SMA, and their peripheral vascular resistances. Here, the individual artery was simplified to a tapered tube and the resistances were modelled by a linear resistance. We numerically investigated contribution of the peripheral vascular resistance of SMA to the systemic blood distribution using this model. In addition to the upstream end of the model, which correlates with the left ventricle, two types of boundary condition were applied; mean left ventricular pressure which correlates with blood pressure (BP) and mean cardiac output which corresponds to cardiac index (CI). We examined it to reproduce the experimentally obtained hemodynamic change, in terms of the ratio of the aforementioned hemodynamic parameters from their initial values before the acupuncture, by regulating the peripheral vascular resistances and the upstream boundary condition. First, only the peripheral vascular resistance of SMA was changed to show contribution of the resistance to the change in blood flow volume in SMA, expecting reproduction of the experimentally obtained change. It was found, however, this was not enough to reproduce the experimental result. Then, we also changed the resistances of the other arteries together with the value given at upstream boundary. Here, the resistances of the other arteries were changed simultaneously in the same amount. Consequently, we successfully reproduced the hemodynamic change to find that regulation of the upstream boundary condition to the value experimentally obtained after the stimulation is necessary for the reproduction, though statistically significant changes in BP and CI were not observed in the experiment. It is generally known that sympathetic and parasympathetic tones take part in regulation of whole the systemic circulation including the cardiac function. The present result indicates that stimulation to ST-36 could induce vasodilation of peripheral circulation of SMA and vasoconstriction of that of other arteries. In addition, it implies that experimentally obtained small changes in BP and CI induced by the acupuncture may be involved in the therapeutic response.

Keywords: acupuncture, hemodynamics, lumped-parameter approximation, modeling, systemic vascular resistance

Procedia PDF Downloads 224
2793 Identifying Applicant Potential Through Admissions Testing

Authors: Belinda Brunner

Abstract:

Objectives: Communicate common test constructs of well-known higher education admissions tests. Discuss influences on admissions test construct definition and design and discuss research on related to factors influencing success in academic study. Discuss how admissions tests can be used to identify relevant talent. Examine how admissions test can be used to facilitate educational mobility and inform selection decisions when the prerequisite curricula is not standardized Observations: Generally speaking, constructs of admissions tests can be placed along a continuum from curriculum-related knowledge to more general reasoning abilities. For example, subject-specific achievement tests are more closely aligned to a prescribed curriculum, while reasoning tests are typically not associated with a specific curriculum. This session will draw reference from the test-constructs of well-known international higher education admissions tests, such as the UK clinical aptitude test (UKCAT) which is used for medicine and dentistry admissions. Conclusions: The purpose of academic admissions testing is to identify potential students with the prerequisite skills set needed to succeed in the academic environment, but how can the test construct help achieve this goal? Determination of the appropriate test construct for tests used in the admissions selection decisions should be influenced by a number of factors, including the preceding academic curricula, other criteria influencing the admissions decision, and the principal purpose for testing. Attendees of this session will learn the types of aptitudes and knowledge that are assessed higher education admissions tests and will have the opportunity to gain insight into how careful and deliberate consideration of the desired test constructs can aid in identifying potential students with the greatest likelihood of success in medical school.

Keywords: admissions, measuring success, selection, identify skills

Procedia PDF Downloads 488
2792 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
2791 The Study of Ultimate Response Guideline of Kuosheng BWR/6 Nuclear Power Plant Using TRACE and SNAP

Authors: J. R. Wang, J. H. Yang, Y. Chiang, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

In this study of ultimate response guideline (URG), Kuosheng BWR/6 nuclear power plant (NPP) TRACE model was established. The reactor depressurization, low pressure water injection, and containment venting are the main actions of URG. This research focuses to evaluate the efficiency of URG under Fukushima-like conditions. Additionally, the sensitivity study of URG was also performed in this research. The analysis results of TRACE present that URG can keep the peak cladding temperature (PCT) below 1088.7 K (the failure criteria) under Fukushima-like conditions. It implied that Kuosheng NPP was at the safe situation.

Keywords: BWR, TRACE, safety analysis, ultimate response guideline (URG)

Procedia PDF Downloads 562
2790 Upgrading of Problem-Based Learning with Educational Multimedia to the Undergraduate Students

Authors: Sharifa Alduraibi, Abir El Sadik, Ahmed Elzainy, Alaa Alduraibi, Ahmed Alsolai

Abstract:

Introduction: Problem-based learning (PBL) is an active student-centered educational modality, influenced by the students' interest that required continuous motivation to improve their engagement. The new era of professional information technology facilitated the utilization of educational multimedia, such as videos, soundtracks, and photographs promoting students' learning. The aim of the present study was to introduce multimedia-enriched PBL scenarios for the first time in college of medicine, Qassim University, as an incentive for better students' engagement. In addition, students' performance and satisfaction were evaluated. Methodology: Two multimedia-enhanced PBL scenarios were implemented to the third years' students in the urinary system block. Radiological images, plain CT scan, and X-ray of the abdomen and renal nuclear scan correlated with their pathological gross photographs were added to the scenarios. One week before the first sessions, pre-recorded orientation videos for PBL tutors were submitted to clarify the multimedia incorporated in the scenarios. Other two traditional PBL scenarios devoid of multimedia demonstrating the pathological and radiological findings were designed. Results and Discussion: Comparison between the formative assessments' results by the end of the two PBL modalities was done. It revealed significant increase in students' engagement, critical thinking and practical reasoning skills during the multimedia-enhanced sessions. Students' perception survey showed great satisfaction with the new strategy. Conclusion: It could be concluded from the current work that multimedia created technology-based teaching strategy inspiring the student for self-directed thinking and promoting students' overall achievement.

Keywords: multimedia, pathology and radiology images, problem-based learning, videos

Procedia PDF Downloads 157
2789 Variation of Stagnation Properties at Various Altitudes of an Klimov RD-33 Engine

Authors: Upamanyu Majumder, Angshuman Das

Abstract:

The Klimov RD-33 is a turbofan jet engine for a lightweight fighter jet that is the primary engine for the Mikoyan MiG-29. Its production started in 1981. The RD-33 was the first afterburning turbofan engine produced by the Klimov Company of Russia in the 8,000 to 9,000 kilograms-force (78,000 to 88,000 N; 18,000 to 20,000 lbf) thrust class. It features a modular twin-shaft design with individual parts that can be replaced separately and has a good tolerance to the environment. The RD-33 is simple to maintain and retains good performance in challenging environments. In this paper the stagnation properties(pressure and temperature) at the intake diffuser, compressor and turbine sections of the RD-33 engine are calculated using the standard atmosphere conditions at different altitudes( take-off, 5000m, 10000m, 15000m, 20000m and 22500m). The results are plotted against altitude values using MS-Excel.

Keywords: Klimov RD-33 engine, stagnation properties, various altitudes, ms-excel

Procedia PDF Downloads 359
2788 Impact of Ethnoscience-Based Teaching Approach: Thinking Relevance, Effectiveness and Learner Retention in Physics Concepts of Optics

Authors: Rose C.Anamezie, Mishack T. Gumbo

Abstract:

Physics learners’ poor retention, which culminates in poor achievement due to teaching approaches that are unrelated to learners’ in non-Western cultures, warranted the study. The tenet of this study was to determine the effectiveness of the ethnoscience-based teaching (EBT) approach on learners’ retention in the Physics concept of Optics in the Awka Education zone of Anambra State- Nigeria. Two research questions and three null hypotheses tested at a 0.05 level of significance guided the study. The design adopted for the study was Quasi-experimental. Specifically, a non-equivalent control group design was adopted. The population for the study was 4,825 SS2 Physics learners in the zone. 160 SS2 learners were sampled using purposive and random sampling. The experimental group was taught rectilinear propagation of light (RPL) using the EBT approach, while the control group was taught the same topic using the lecture method. The instrument for data collection was the 50 Physics Retention Test (PRT) which was validated by three experts and tested for reliability using Kuder-Richardson’s formula-20, which yielded coefficients of 0.81. The data were analysed using mean, standard deviation and analysis of co-variance (p< .05). The results showed higher retention for the use of the EBT approach than the lecture method, while there was no significant gender-based factor in the learners’ retention in Physics. It was recommended that the EBT approach, which bridged the gender gap in Physics retention, be adopted in secondary school teaching and learning since it could transform science teaching, enhance learners’ construction of new science concepts based on their existing knowledge and bridge the gap between Western science and learners’ worldviews.

Keywords: Ethnoscience-based teaching, optics, rectilinear propagation of light, retention

Procedia PDF Downloads 83
2787 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment

Authors: Abdulrazzaq Hammal

Abstract:

In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.

Keywords: ceramic, membrane, water, wastewater

Procedia PDF Downloads 65
2786 A Sliding Mesh Technique and Compressibility Correction Effects of Two-Equation Turbulence Models for a Pintle-Perturbed Flow Analysis

Authors: J. Y. Heo, H. G. Sung

Abstract:

Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.

Keywords: pintle, sliding mesh, turbulent model, compressibility correction

Procedia PDF Downloads 489
2785 Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study

Authors: Henrique Fernandes, Sofia Catalucci, Richard Leach, Kapil Sugand

Abstract:

Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories.

Keywords: holography, 3D scans, hologram box, metrology, point cloud

Procedia PDF Downloads 89
2784 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting

Procedia PDF Downloads 331
2783 Screening for Internet Addiction among Medical Students in a Saudi Community

Authors: Nawaf A. Alqahtani, Ali M. Alqahtani, Khalid A. Alqahtani, Huda S. Abdullfattah, Ebtehal A. Alessa, Khalid S. Al Gelban, Ossama A. Mostafa

Abstract:

Background: The internet is an exciting medium that is becoming an essential part of everyday life. Although the internet is fully observed in Saudi Arabia, young people may be vulnerable to problematic internet use, possibly leading to addiction. Aim of study: To explore the magnitude of internet addiction (IA) among medical students associated risk factors and its impact on students' academic achievement. Subjects and Methods: A cross sectional study was conducted in 2014 on 571 medical students (293 males and 278 females) at the College of Medicine, King Khalid University, Abha, Saudi Arabia. Data Collection was done through using the Arabic version of the Compulsive Internet Use Scale and a checklist of demographic characteristics. Results: Age of participants ranged from 19 to 26 years (Mean+SD: 21.9+1.5 years). Internet access was available to 97.4% of students at home and to 80.2% of students at their mobile phones. The most frequently accessed websites by medical students were the social media (90.7%), scientific website (50.4%) and the news websites (31.3%). IA was mild in 47.8% of medical students while 5.8% had moderate IA. None of the students had severe IA. Prevalence of IA was significantly higher among female medical students (p=0.002), availability of internet at home (p=0.022), and availability of internet at the students' mobile phone (p=0.041). The mean General Point Average (GPA) was highest among students with mild IA (4.0+0.6), compared with 3.6+0.6 among those with moderate addiction, and 3.9+0.6 among those who did not show IA. Differences in mean GPA according to grade of IA were statistically significant ((P=0.001). Conclusions: Prevalence of IA is high among medical students in Saudi Arabia. Risk factors for IA include female gender, availability of internet at home or at the mobile phone. IA has a significant impact on students' GPA. Periodic screening of medical students for IA and raising their awareness toward the possible risk of IA are recommended.

Keywords: internet addiction, medical students, risk factors, Saudi Arabia

Procedia PDF Downloads 529
2782 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 284
2781 Phytochemical Screening, Anti-Microbial and Mineral Determination of Stachtarpheta indica Extract

Authors: Ibrahim Isah Lakan, Nasiru Ibrahim

Abstract:

These Phytochemical screening, Antimicrobial activities and mineral Determination of aqueous extract of Stachtarpheta indica were assessed. The result reveals the presence of flavonoids, tannins, saponins, alkaloids, glycosides and anthraquinones. The disc diffusion of aqueous extract showed Escherichia coli, 13 and antibiotic, 19 mm; Bacillus subtilis, 10 and anti –biotic, 17 mm; Klebsiller pnemuoniae , 14 and antibiotic, 24mm and Pseudmonas aeruginosa, 24 and antibiotic, 36 mm which are all comparable with the standard antibiotic cyprotomycin. The mineral content determination by flame photometer revealed that 1.25 (Na+), 0.85 (K +), 1.75 (Ca 2+) % which is a clear indication of the safety of the extract for the hypertensive patients and could be used to lower blood pressure.

Keywords: microbials, mineral, phytochemicals, stachtarpheta indica extracts

Procedia PDF Downloads 563
2780 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling

Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose

Abstract:

The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.

Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE

Procedia PDF Downloads 258
2779 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases

Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim

Abstract:

This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.

Keywords: Carbon monoxide, Efficiency, Emissions, Gas Turbine, Nox, UHC

Procedia PDF Downloads 437
2778 Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test

Authors: R. Sadeghzadegan, S. A. Naeini, A. Mirzaii

Abstract:

In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.

Keywords: small shear modulus, bender element test, plastic fines, sand

Procedia PDF Downloads 470
2777 A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School

Authors: Wen-Te Chang, Yun-Hsin Pai

Abstract:

Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too.

Keywords: STEAM, toy design, pedagogy plans, evaluation

Procedia PDF Downloads 283
2776 Effective Energy Saving of a Large Building through Multiple Approaches

Authors: Choo Hong Ang

Abstract:

The most popular approach to save energy for large commercial buildings in Malaysia is to replace the existing chiller plant of high kW/ton to one of lower kW/ton. This approach, however, entails large capital outlay with a long payment period of up to 7 years. This paper shows that by using multiple approaches, other than replacing the existing chiller plant, an energy saving of up to 20 %, is possible. The main methodology adopted was to identify and then plugged all heat ingress paths into a building, including putting up glass structures to prevent mixing of internal air-conditioned air with the ambient environment, and replacing air curtains with glass doors. This methodology could save up to 10 % energy bill. Another methodology was to change fixed speed motors of air handling units (AHU) to variable speed drive (VSD) and changing escalators to motion-sensor type. Other methodologies included reducing heat load by blocking air supply to non-occupied parcels, rescheduling chiller plant operation, changing of fluorescent lights to LED lights, and conversion from tariff B to C1. A case example of Komtar, the tallest building in Penang, is given here. The total energy bill for Komtar was USD2,303,341 in 2016 but was reduced to USD 1,842,927.39 in 2018, a significant saving of USD460,413.86 or 20 %. In terms of kWh, there was a reduction from 18, 302,204.00 kWh in 2016 to 14,877,105.00 kWh in 2018, a reduction of 3,425,099.00 kWh or 18.71 %. These methodologies used were relatively low cost and the payback period was merely 24 months. With this achievement, the Komtar building was awarded champion of the Malaysian National Energy Award 2019 and second runner up of the Asean Energy Award. This experience shows that a strong commitment to energy saving is the key to effective energy saving.

Keywords: chiller plant, energy saving measures, heat ingress, large building

Procedia PDF Downloads 105
2775 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate

Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly

Abstract:

This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.

Keywords: daylighting, desert, energy efficiency, shading

Procedia PDF Downloads 431
2774 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 380
2773 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 59
2772 Inclusive Educational Technology for Students in Rural Areas in Nigeria: Experimenting Micro-Learning and Gamification in Basic Technology Classes

Authors: Efuwape Bamidele Michael, Efuwape Oluwabunmi Asake

Abstract:

Nigeria has some deep rural environments that seem secluded from most of the technological amenities for convenient living and learning. Most schools in such environments are yet to be captured in the educational applications of technological facilities. The study explores the facilitation of basic technology instructions with micro-learning and gamification among students in rural Junior Secondary Schools in the Ipokia Local Government Area (LGA) of Ogun state. The study employed a quasi-experimental design, specifically the pre-test and post-test control group design. The study population comprised all Junior Secondary School students in the LGA. Four Junior Secondary Schools in the LGA were randomly selected for the study and classified into two experimental and two control groups. A total sample of 156 students participated in the study. Basic Technology Achievement Test and Junior School Students’ Attitudinal Scale were instruments used for data collection in the study with reliability coefficients of 0.87 and 0.83, respectively. Five hypotheses guided the study and were tested using Analysis of covariance (ANCOVA) at a 0.05 level of significance. Findings from the study established significant marginal differences in students’ academic performance (F = 644.301; p = .000), learning retention (F = 583.335; p = .000), and attitude towards learning basic technology (F = 491.226; p = .000) between the two groups in favour of the experimental group exposed to micro-learning and gamification. As a recommendation, adequate provisions for inclusive educational practices with technological applications should be ensured for all children irrespective of location within the country, especially to encourage effective learning in rural schools.

Keywords: inclusive education, educational technology, basic technology students, rural areas in Nigeria, micro-learning, gamification

Procedia PDF Downloads 88
2771 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment

Authors: Muhammad Muzamal, Anders Rasmuson

Abstract:

Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.

Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment

Procedia PDF Downloads 401