Search results for: simulation of metal spinning
5299 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study
Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan
Abstract:
Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation
Procedia PDF Downloads 2235298 Advanced Lithium Recovery from Brine: 2D-Based Ion Selectivity Membranes
Authors: Nour S. Abdelrahman, Seunghyun Hong, Hassan A. Arafat, Daniel Choi, Faisal Al Marzooqi
Abstract:
Abstract—The advancement of lithium extraction methods from water sources, particularly saltwater brine, is gaining prominence in the lithium recovery industry due to its cost-effectiveness. Traditional techniques like recrystallization, chemical precipitation, and solvent extraction for metal recovery from seawater or brine are energy-intensive and exhibit low efficiency. Moreover, the extensive use of organic solvents poses environmental concerns. As a result, there's a growing demand for environmentally friendly lithium recovery methods. Membrane-based separation technology has emerged as a promising alternative, offering high energy efficiency and ease of continuous operation. In our study, we explored the potential of lithium-selective sieve channels constructed from layers of 2D graphene oxide and MXene (transition metal carbides and nitrides), integrated with surface – SO₃₋ groups. The arrangement of these 2D sheets creates interplanar spacing ranging from 0.3 to 0.8 nm, which forms a barrier against multivalent ions while facilitating lithium-ion movement through nano capillaries. The introduction of the sulfonate group provides an effective pathway for Li⁺ ions, with a calculated binding energy of Li⁺ – SO³⁻ at – 0.77 eV, the lowest among monovalent species. These modified membranes demonstrated remarkably rapid transport of Li⁺ ions, efficiently distinguishing them from other monovalent and divalent species. This selectivity is achieved through a combination of size exclusion and varying binding affinities. The graphene oxide channels in these membranes showed exceptional inter-cation selectivity, with a Li⁺/Mg²⁺ selectivity ratio exceeding 104, surpassing commercial membranes. Additionally, these membranes achieved over 94% rejection of MgCl₂.Keywords: ion permeation, lithium extraction, membrane-based separation, nanotechnology
Procedia PDF Downloads 705297 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field
Authors: Thomas Jin-Chee Liu
Abstract:
In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.Keywords: compressive stress, crack tip, Joule heating, finite element
Procedia PDF Downloads 4035296 Infrared Detection Device for Accurate Scanning 3D Objects
Authors: Evgeny A. Rybakov, Dmitry P. Starikov
Abstract:
This article contains information about creating special unit for scanning 3D objects different nature, different materials, for example plastic, plaster, cardboard, wood, metal and etc. The main part of the unit is infrared transducer, which is sends the wave to the object and receive back wave for calculating distance. After that, microcontroller send to PC data, and computer program create model for printing from the plastic, gypsum, brass, etc.Keywords: clutch, infrared, microcontroller, plastic, shaft, stage
Procedia PDF Downloads 4415295 Shield Tunnel Excavation Simulation of a Case Study Using a So-Called 'Stress Relaxation' Method
Authors: Shengwei Zhu, Alireza Afshani, Hirokazu Akagi
Abstract:
Ground surface settlement induced by shield tunneling is addressing increasing attention as shield tunneling becomes a popular construction technique for tunnels in urban areas. This paper discusses a 2D longitudinal FEM simulation of a tunneling case study in Japan (Tokyo Metro Yurakucho Line). Tunneling-induced field data was already collected and is used here for comparison and evaluating purposes. In this model, earth pressure, face pressure, backfilling grouting, elastic tunnel lining, and Mohr-Coulomb failure criterion for soil elements are considered. A method called ‘stress relaxation’ is also exploited to simulate the gradual tunneling excavation. Ground surface settlements obtained from numerical results using the introduced method are then compared with the measurement data.Keywords: 2D longitudinal FEM model, tunneling case study, stress relaxation, shield tunneling excavation
Procedia PDF Downloads 3285294 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative
Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.
Abstract:
Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.Keywords: electrochemical parameters, EIS, mild steel, tafel polarization
Procedia PDF Downloads 3355293 Position and Speed Tracking of DC Motor Based on Experimental Analysis in LabVIEW
Authors: Muhammad Ilyas, Awais Khan, Syed Ali Raza Shah
Abstract:
DC motors are widely used in industries to provide mechanical power in speed and torque. The position and speed control of DC motors is getting the interest of the scientific community in robotics, especially in the robotic arm, a flexible joint manipulator. The current research work is based on position control of DC motors using experimental investigations in LabVIEW. The linear control strategy is applied to track the position and speed of the DC motor with comparative analysis in the LabVIEW platform and simulation analysis in MATLAB. The tracking error in hardware setup based on LabVIEW programming is slightly greater than simulation analysis in MATLAB due to the inertial load of the motor during steady-state conditions. The controller output shows the input voltage applied to the dc motor varies between 0-8V to ensure minimal steady error while tracking the position and speed of the DC motor.Keywords: DC motor, labview, proportional integral derivative control, position tracking, speed tracking
Procedia PDF Downloads 1035292 Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell
Authors: Chadel Meriem, Bensmaine Souhila, Chadel Asma, Bouchikhi Chaima
Abstract:
The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer.Keywords: methylammonium lead Iodide, perovskite solar cell, caracteristic J-V, effeciency
Procedia PDF Downloads 655291 Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear
Authors: Kamal Haider
Abstract:
Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data.Keywords: landing gear, computational aeroacoustics, computational aerodynamics, detached eddy simulation
Procedia PDF Downloads 2845290 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures
Authors: Milad Abbasi
Abstract:
Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network
Procedia PDF Downloads 1515289 Material Failure Process Simulation by Improved Finite Elements with Embedded Discontinuities
Authors: Gelacio Juárez-Luna, Gustavo Ayala, Jaime Retama-Velasco
Abstract:
This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.Keywords: variational formulation, strong discontinuity, embedded discontinuities, strain localization
Procedia PDF Downloads 7795288 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments
Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño
Abstract:
Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.Keywords: heat transfer, heat treatment, mango, modeling and simulation
Procedia PDF Downloads 2465287 Design of a Dual Polarized Resonator Antenna for Mobile Communication System
Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan
Abstract:
This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.Keywords: metamaterial, electromagnetic band gap, dual polarization, resonator antenna
Procedia PDF Downloads 3855286 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions
Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant
Procedia PDF Downloads 5025285 Geochemical Baseline and Origin of Trace Elements in Soils and Sediments around Selibe-Phikwe Cu-Ni Mining Town, Botswana
Authors: Fiona S. Motswaiso, Kengo Nakamura, Takeshi Komai
Abstract:
Heavy metals may occur naturally in rocks and soils, but elevated quantities of them are being gradually released into the environment by anthropogenic activities such as mining. In order to address issues of heavy metal water and soil pollution, a distinction needs to be made between natural and anthropogenic anomalies. The current study aims at characterizing the spatial distribution of trace elements and evaluate site-specific geochemical background concentrations of trace elements in the mine soils examined, and also to discriminate between lithogenic and anthropogenic sources of enrichment around a copper-nickel mining town in Selibe-Phikwe, Botswana. A total of 20 Soil samples, 11 river sediment, and 9 river water samples were collected from an area of 625m² within the precincts of the mine and the smelter. The concentrations of metals (Cu, Ni, Pb, Zn, Cr, Ni, Mn, As, Pb, and Co) were determined by using an ICP-MS after digestion with aqua regia. Major elements were also determined using ED-XRF. Water pH and EC were measured on site and recorded while soil pH and EC were also determined in the laboratory after performing water elution tests. The highest Cu and Ni concentrations in soil are 593mg/kg and 453mg/kg respectively, which is 3 times higher than the crustal composition values and 2 times higher than the South African minimum allowable levels of heavy metals in soils. The level of copper contamination was higher than that of nickel and other contaminants. Water pH levels ranged from basic (9) to very acidic (3) in areas closer to the mine/smelter. There is high variation in heavy metal concentration, eg. Cu suggesting that some sites depict regional natural background concentrations while other depict anthropogenic sources.Keywords: contamination, geochemical baseline, heavy metals, soils
Procedia PDF Downloads 1585284 Data-Driven Simulations Tools for Der and Battery Rich Power Grids
Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili
Abstract:
Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools
Procedia PDF Downloads 1025283 Fast Transient Workflow for External Automotive Aerodynamic Simulations
Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley
Abstract:
In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS
Procedia PDF Downloads 1145282 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 2645281 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies
Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz
Abstract:
The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment
Procedia PDF Downloads 1965280 The Photovoltaic Panel at End of Life: Experimental Study of Metals Release
Authors: M. Tammaro, S. Manzo, J. Rimauro, A. Salluzzo, S. Schiavo
Abstract:
The solar photovoltaic (PV) modules are considered to have a negligible environmental impact compared to the fossil energy. Therefore also the waste management and the corresponding potential environmental hazard needs to be considered. The case of the photovoltaic panel is unique because the time lag from the manufacturing to the decommissioning as waste usually takes 25-30 years. Then the environmental hazard associated with end life of PV panels has been largely related to their metal contents. The principal concern regards the presence of heavy metals as Cd in thin film (TF) modules or Pb and Cr in crystalline silicon (c-Si) panels. At the end of life of PV panels, these dangerous substances could be released in the environment, if special requirements for their disposal are not adopted. Nevertheless, in literature, only a few experimental study about metal emissions from silicon crystalline/thin film panels and the corresponding environmental effect are present. As part of a study funded by the Italian national consortium for the waste collection and recycling (COBAT), the present work was aimed to analyze experimentally the potential release into the environment of hazardous elements, particularly metals, from PV waste. In this paper, for the first time, eighteen releasable metals a large number of photovoltaic panels, by c-Si and TF, manufactured in the last 30 years, together with the environmental effects by a battery of ecotoxicological tests, were investigated. Leaching tests are conducted on the crushed samples of PV module. The test is conducted according to Italian and European Standard procedure for hazard assessment of the granular waste and of the sludge. The sample material is shaken for 24 hours in HDPE bottles with an overhead mixer Rotax 6.8 VELP at indoor temperature and using pure water (18 MΩ resistivity) as leaching solution. The liquid-to-solid ratio was 10 (L/S=10, i.e. 10 liters of water per kg of solid). The ecotoxicological tests were performed in the subsequent 24 hours. A battery of toxicity test with bacteria (Vibrio fisheri), algae (Pseudochirneriella subcapitata) and crustacea (Daphnia magna) was carried out on PV panel leachates obtained as previously described and immediately stored in dark and at 4°C until testing (in the next 24 hours). For understand the actual pollution load, a comparison with the current European and Italian benchmark limits was performed. The trend of leachable metal amount from panels in relation to manufacturing years was then highlighted in order to assess the environmental sustainability of PV technology over time. The experimental results were very heterogeneous and show that the photovoltaic panels could represent an environmental hazard. The experimental results showed that the amounts of some hazardous metals (Pb, Cr, Cd, Ni), for c-Si and TF, exceed the law limits and they are a clear indication of the potential environmental risk of photovoltaic panels "as a waste" without a proper management.Keywords: photovoltaic panel, environment, ecotoxicity, metals emission
Procedia PDF Downloads 2585279 Cotton Fiber Quality Improvement by Introducing Sucrose Synthase (SuS) Gene into Gossypium hirsutum L.
Authors: Ahmad Ali Shahid, Mukhtar Ahmed
Abstract:
The demand for long staple fiber having better strength and length is increasing with the introduction of modern spinning and weaving industry in Pakistan. Work on gene discovery from developing cotton fibers has helped to identify dozens of genes that take part in cotton fiber development and several genes have been characterized for their role in fiber development. Sucrose synthase (SuS) is a key enzyme in the metabolism of sucrose in a plant cell, in cotton fiber it catalyzes a reversible reaction, but preferentially converts sucrose and UDP into fructose and UDP-glucose. UDP-glucose (UDPG) is a nucleotide sugar act as a donor for glucose residue in many glycosylation reactions and is essential for the cytosolic formation of sucrose and involved in the synthesis of cell wall cellulose. The study was focused on successful Agrobacterium-mediated stable transformation of SuS gene in pCAMBIA 1301 into cotton under a CaMV35S promoter. Integration and expression of the gene were confirmed by PCR, GUS assay, and real-time PCR. Young leaves of SuS overexpressing lines showed increased total soluble sugars and plant biomass as compared to non-transgenic control plants. Cellulose contents from fiber were significantly increased. SEM analysis revealed that fibers from transgenic cotton were highly spiral and fiber twist number increased per unit length when compared with control. Morphological data from field plants showed that transgenic plants performed better in field conditions. Incorporation of genes related to cotton fiber length and quality can provide new avenues for fiber improvement. The utilization of this technology would provide an efficient import substitution and sustained production of long-staple fiber in Pakistan to fulfill the industrial requirements.Keywords: agrobacterium-mediated transformation, cotton fiber, sucrose synthase gene, staple length
Procedia PDF Downloads 2325278 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 and CO) Production
Authors: Bedarnia Ishak
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x) Td (Ni2+xFe3+2-x) OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, oxide zenc
Procedia PDF Downloads 2805277 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 3845276 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier
Authors: Hassan Jassim Motlak
Abstract:
A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA
Procedia PDF Downloads 3145275 Synthesis and Characterization of pH-Sensitive Graphene Quantum Dot-Loaded Metal-Organic Frameworks for Targeted Drug Delivery and Fluorescent Imaging
Authors: Sayed Maeen Badshah, Kuen-Song Lin, Abrar Hussain, Jamshid Hussain
Abstract:
Liver cancer is a significant global health issue, ranking fifth in incidence and second in mortality. Effective therapeutic strategies are urgently needed to combat this disease, particularly in regions with high prevalence. This study focuses on developing and characterizing fluorescent organometallic frameworks as distinct drug delivery carriers with potential applications in both the treatment and biological imaging of liver cancer. This work introduces two distinct organometallic frameworks: the cake-shaped GQD@NH₂-MIL-125 and the cross-shaped M8U6/FM8U6. The GQD@NH₂-MIL-125 framework is particularly noteworthy for its high fluorescence, making it an effective tool for biological imaging. X-ray diffraction (XRD) analysis revealed specific diffraction peaks at 6.81ᵒ (011), 9.76ᵒ (002), and 11.69ᵒ (121), with an additional significant peak at 26ᵒ (2θ), corresponding to the carbon material. Morphological analysis using Field Emission Scanning Electron Microscopy (FE-SEM), and Transmission Electron Microscopy (TEM) demonstrated that the framework has a front particle size of 680 nm and a side particle size of 55±5 nm. High-resolution TEM (HR-TEM) images confirmed the successful attachment of graphene quantum dots (GQDs) onto the NH2-MIL-125 framework. Fourier-Transform Infrared (FT-IR) spectroscopy identified crucial functional groups within the GQD@NH₂-MIL-125 structure, including O-Ti-O metal bonds within the 500 to 700 cm⁻¹ range, and N-H and C-N bonds at 1,646 cm⁻¹ and 1,164 cm⁻¹, respectively. BET isotherm analysis further revealed a specific surface area of 338.1 m²/g and an average pore size of 46.86 nm. This framework also demonstrated UV-active properties, as identified by UV-visible light spectra, and its photoluminescence (PL) spectra showed an emission peak around 430 nm when excited at 350 nm, indicating its potential as a fluorescent drug delivery carrier. In parallel, the cross-shaped M8U6/FM8U6 frameworks were synthesized and characterized using X-ray diffraction, which identified distinct peaks at 2θ = 7.4 (111), 8.5 (200), 9.2 (002), 10.8 (002), 12.1 (220), 16.7 (103), and 17.1 (400). FE-SEM, HR-TEM, and TEM analyses revealed particle sizes of 350±50 nm for M8U6 and 200±50 nm for FM8U6. These frameworks, synthesized from terephthalic acid (H₂BDC), displayed notable vibrational bonds, such as C=O at 1,650 cm⁻¹, Fe-O in MIL-88 at 520 cm⁻¹, and Zr-O in UIO-66 at 482 cm⁻¹. BET analysis showed specific surface areas of 740.1 m²/g with a pore size of 22.92 nm for M8U6 and 493.9 m²/g with a pore size of 35.44 nm for FM8U6. Extended X-ray Absorption Fine Structure (EXAFS) spectra confirmed the stability of Ti-O bonds in the frameworks, with bond lengths of 2.026 Å for MIL-125, 1.962 Å for NH₂-MIL-125, and 1.817 Å for GQD@NH₂-MIL-125. These findings highlight the potential of these organometallic frameworks for enhanced liver cancer therapy through precise drug delivery and imaging, representing a significant advancement in nanomaterial applications in biomedical science.Keywords: liver cancer cells, metal organic frameworks, Doxorubicin (DOX), drug release.
Procedia PDF Downloads 55274 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver
Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro
Abstract:
This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance
Procedia PDF Downloads 3925273 Lego Mindstorms as a Simulation of Robotic Systems
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software
Procedia PDF Downloads 3735272 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 & Co) Production
Authors: Bouhenni Mohamed Saif El Islam
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x)Td (Ni2+xFe3+2-x)OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, XCO2
Procedia PDF Downloads 3805271 TRACE/FRAPTRAN Analysis of Kuosheng Nuclear Power Plant Dry-Storage System
Authors: J. R. Wang, Y. Chiang, W. Y. Li, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen
Abstract:
The dry-storage systems of nuclear power plants (NPPs) in Taiwan have become one of the major safety concerns. There are two steps considered in this study. The first step is the verification of the TRACE by using VSC-17 experimental data. The results of TRACE were similar to the VSC-17 data. It indicates that TRACE has the respectable accuracy in the simulation and analysis of the dry-storage systems. The next step is the application of TRACE in the dry-storage system of Kuosheng NPP (BWR/6). Kuosheng NPP is the second BWR NPP of Taiwan Power Company. In order to solve the storage of the spent fuels, Taiwan Power Company developed the new dry-storage system for Kuosheng NPP. In this step, the dry-storage system model of Kuosheng NPP was established by TRACE. Then, the steady state simulation of this model was performed and the results of TRACE were compared with the Kuosheng NPP data. Finally, this model was used to perform the safety analysis of Kuosheng NPP dry-storage system. Besides, FRAPTRAN was used tocalculate the transient performance of fuel rods.Keywords: BWR, TRACE, FRAPTRAN, dry-storage
Procedia PDF Downloads 5185270 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency
Authors: Abdulrahman M. Homadi
Abstract:
As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.Keywords: solar panels, elevation, wind direction, efficiency
Procedia PDF Downloads 296