Search results for: input randomization
180 Advancing Food System Resilience by Pseudocereals Utilization
Authors: Yevheniia Varyvoda, Douglas Taren
Abstract:
At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.Keywords: resilience, pseudocereals, food system, climate change
Procedia PDF Downloads 82179 Collaboration between Grower and Research Organisations as a Mechanism to Improve Water Efficiency in Irrigated Agriculture
Authors: Sarah J. C. Slabbert
Abstract:
The uptake of research as part of the diffusion or adoption of innovation by practitioners, whether individuals or organisations, has been a popular topic in agricultural development studies for many decades. In the classical, linear model of innovation theory, the innovation originates from an expert source such as a state-supported research organisation or academic institution. The changing context of agriculture led to the development of the agricultural innovation systems model, which recognizes innovation as a complex interaction between individuals and organisations, which include private industry and collective action organisations. In terms of this model, an innovation can be developed and adopted without any input or intervention from a state or parastatal research organisation. This evolution in the diffusion of agricultural innovation has put forward new challenges for state or parastatal research organisations, which have to demonstrate the impact of their research to the legislature or a regulatory authority: Unless the organisation and the research it produces cross the knowledge paths of the intended audience, there will be no awareness, no uptake and certainly no impact. It is therefore critical for such a research organisation to base its communication strategy on a thorough understanding of the knowledge needs, information sources and knowledge networks of the intended target audience. In 2016, the South African Water Research Commission (WRC) commissioned a study to investigate the knowledge needs, information sources and knowledge networks of Water User Associations and commercial irrigators with the aim of improving uptake of its research on efficient water use in irrigation. The first phase of the study comprised face-to-face interviews with the CEOs and Board Chairs of four Water User Associations along the Orange River in South Africa, and 36 commercial irrigation farmers from the same four irrigation schemes. Intermediaries who act as knowledge conduits to the Water User Associations and the irrigators were identified and 20 of them were subsequently interviewed telephonically. The study found that irrigators interact regularly with grower organisations such as SATI (South African Table Grape Industry) and SAPPA (South African Pecan Nut Association) and that they perceive these organisations as credible, trustworthy and reliable, within their limitations. State and parastatal research institutions, on the other hand, are associated with a range of negative attributes. As a result, the awareness of, and interest in, the WRC and its research on water use efficiency in irrigated agriculture are low. The findings suggest that a communication strategy that involves collaboration with these grower organisations would empower the WRC to participate much more efficiently and with greater impact in agricultural innovation networks. The paper will elaborate on the findings and discuss partnering frameworks and opportunities to manage perceptions and uptake.Keywords: agricultural innovation systems, communication strategy, diffusion of innovation, irrigated agriculture, knowledge paths, research organisations, target audiences, water use efficiency
Procedia PDF Downloads 115178 Using ANN in Emergency Reconstruction Projects Post Disaster
Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir
Abstract:
Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management
Procedia PDF Downloads 167177 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model
Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle
Abstract:
In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model
Procedia PDF Downloads 103176 Application of Industrial Ecology to the INSPIRA Zone: Territory Planification and New Activities
Authors: Mary Hanhoun, Jilla Bamarni, Anne-Sophie Bougard
Abstract:
INSPIR’ECO is a 18-month research and innovation project that aims to specify and develop a tool to offer new services for industrials and territorial planners/managers based on Industrial Ecology Principles. This project is carried out on the territory of Salaise Sablons and the services are designed to be deployed on other territories. Salaise-Sablons area is located in the limit of 5 departments on a major European economic axis multimodal traffic (river, rail and road). The perimeter of 330 ha includes 90 hectares occupied by 20 companies, with a total of 900 jobs, and represents a significant potential basin of development. The project involves five multi-disciplinary partners (Syndicat Mixte INSPIRA, ENGIE, IDEEL, IDEAs Laboratory and TREDI). INSPIR’ECO project is based on the principles that local stakeholders need services to pool, share their activities/equipment/purchases/materials. These services aims to : 1. initiate and promote exchanges between existing companies and 2. identify synergies between pre-existing industries and future companies that could be implemented in INSPIRA. These eco-industrial synergies can be related to: the recovery / exchange of industrial flows (industrial wastewater, waste, by-products, etc.); the pooling of business services (collective waste management, stormwater collection and reuse, transport, etc.); the sharing of equipments (boiler, steam production, wastewater treatment unit, etc.) or resources (splitting jobs cost, etc.); and the creation of new activities (interface activities necessary for by-product recovery, development of products or services from a newly identified resource, etc.). These services are based on IT tool used by the interested local stakeholders that intends to allow local stakeholders to take decisions. Thus, this IT tool: - include an economic and environmental assessment of each implantation or pooling/sharing scenarios for existing or further industries; - is meant for industrial and territorial manager/planners - is designed to be used for each new industrial project. - The specification of the IT tool is made through an agile process all along INSPIR’ECO project fed with: - Users expectations thanks to workshop sessions where mock-up interfaces are displayed; - Data availability based on local and industrial data inventory. These input allow to specify the tool not only with technical and methodological constraints (notably the ones from economic and environmental assessments) but also with data availability and users expectations. A feedback on innovative resource management initiatives in port areas has been realized in the beginning of the project to feed the designing services step.Keywords: development opportunities, INSPIR’ECO, INSPIRA, industrial ecology, planification, synergy identification
Procedia PDF Downloads 165175 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport
Authors: C. Hall, J. Ramos, V. Ramasamy
Abstract:
Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model
Procedia PDF Downloads 99174 Understanding Project Failures in Construction: The Critical Impact of Financial Capacity
Authors: Nnadi Ezekiel Oluwaseun Ejiofor
Abstract:
This research investigates the effects of poor cost estimation, material cost variations, and payment punctuality on the financial health and execution of construction projects in Nigeria. To achieve the objectives of the study, a quantitative research approach was employed, and data was gathered through an online survey of 74 construction industry professionals consisting of quantity surveyors, contractors, and other professionals. The study surveyed input on cost estimation errors, price fluctuations, and payment delays, among other factors. The responses of the respondents were analyzed using a five-point Likert scale and the Relative Importance Index (RII). The findings demonstrated that the errors in cost estimating in the Bill of Quantity (BOQ) have a high degree of negative impact on the reputation and image of the participants in the projects. The greatest effect was experienced on the likelihood of obtaining future endeavors for contractors (mean value = 3.42), followed by the likelihood of obtaining new commissions by quantity surveyors (mean value = 3.40). The level of inaccuracy in costing that undershoots exposes them to risks was most serious in terms of easement of construction and effects of shortage of funds to pursue bankruptcy (hence fears of mean value = 3.78). There was also considerable financial damage as a result of cost underestimation, whereby contractors suffered the worst loss in profit (mean value = 3.88). Every expense comes with its own peculiar risk and uncertainty. Pressure on the cost of materials and every other expense attributed to the building and completion of a structure adds risks to the performance figures of a project. The greatest weight (mean importance score = 4.92) was attributed to issues like market inflation in building materials, while the second greatest weight (mean importance score = 4.76) was due to increased transportation charges. On the other hand, delays in payments arising from issues of the clients like poor availability of funds (RII=0.71) and contracting issues such as disagreements on the valuation of works done (RII=0.72) or other reasons were also found to lead to project delays and additional costs. The results affirm the importance of proper cost estimation on the health of organization finances and project risks and finishes within set time limits. As for the suggestions, it is proposed to progress on the methods of costing, engender better communications with the stakeholders, and manage the delays by way of contracting and financial control. This study enhances the existing literature on construction project management by suggesting ways to deal with adverse cost inaccuracies and availability of materials due to delays in payments which, if addressed, would greatly improve the economic performance of the construction business.Keywords: cost estimation, construction project management, material price fluctuations, payment delays, financial impact
Procedia PDF Downloads 12173 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 168172 The Lighthouse Project: Recent Initiatives to Navigate Australian Families Safely Through Parental Separation
Authors: Kathryn McMillan
Abstract:
A recent study of 8500 adult Australians aged 16 and over revealed 62% had experienced childhood maltreatment. In response to multiple recommendations by bodies such as the Australian Law Reform Commission, parliamentary reports and stakeholder input, a number of key initiatives have been developed to grapple with the difficulties of a federal-state system and to screen and triage high-risk families navigating their way through the court system. The Lighthouse Project (LHP) is a world-first initiative of the Federal Circuit and Family Courts in Australia (FCFOCA) to screen family law litigants for major risk factors, including family violence, child abuse, alcohol or substance abuse and mental ill-health at the point of filing in all applications that seek parenting orders. It commenced on 7 December 2020 on a pilot basis but has now been expanded to 15 registries across the country. A specialist risk screen, Family DOORS, Triage has been developed – focused on improving the safety and wellbeing of families involved in the family law system safety planning and service referral, and ¬ differentiated case management based on risk level, with the Evatt List specifically designed to manage the highest risk cases. Early signs are that this approach is meeting the needs of families with multiple risks moving through the Court system. Before the LHP, there was no data available about the prevalence of risk factors experienced by litigants entering the family courts and it was often assumed that it was the litigation process that was fueling family violence and other risks such as suicidality. Data from the 2022 FCFCOA annual report indicated that in parenting proceedings, 70% alleged a child had been or was at risk of abuse, 80% alleged a party had experienced Family Violence, 74 % of children had been exposed to Family Violence, 53% alleged through substance misuse by party children had caused or was at risk of causing harm to children and 58% of matters allege mental health issues of a party had caused or placed a child at risk of harm. Those figures reveal the significant overlap between child protection and family violence, both of which are under the responsibility of state and territory governments. Since 2020, a further key initiative has been the co-location of child protection and police officials amongst a number of registries of the FCFOCA. The ability to access in a time-effective way details of family violence or child protection orders, weapons licenses, criminal convictions or proceedings is key to managing issues across the state and federal divide. It ensures a more cohesive and effective response to family law, family violence and child protection systems.Keywords: child protection, family violence, parenting, risk screening, triage.
Procedia PDF Downloads 79171 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India
Authors: Priyanka Mondal, Santosh K. Sarkar
Abstract:
The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.Keywords: pollution assessment, sediment contamination, sediment quality, trace elements
Procedia PDF Downloads 257170 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology
Authors: Sanjeev Kumar Appicharla
Abstract:
This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach
Procedia PDF Downloads 190169 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru
Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama
Abstract:
There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.Keywords: water economy, simulation, modeling, integration
Procedia PDF Downloads 156168 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees
Authors: Alexandru-Ion Marinescu
Abstract:
There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution
Procedia PDF Downloads 120167 Innovation Management in E-Health Care: The Implementation of New Technologies for Health Care in Europe and the USA
Authors: Dariusz M. Trzmielak, William Bradley Zehner, Elin Oftedal, Ilona Lipka-Matusiak
Abstract:
The use of new technologies should create new value for all stakeholders in the healthcare system. The article focuses on demonstrating that technologies or products typically enable new functionality, a higher standard of service, or a higher level of knowledge and competence for clinicians. It also highlights the key benefits that can be achieved through the use of artificial intelligence, such as relieving clinicians of many tasks and enabling the expansion and greater specialisation of healthcare services. The comparative analysis allowed the authors to create a classification of new technologies in e-health according to health needs and benefits for patients, doctors, and healthcare systems, i.e., the main stakeholders in the implementation of new technologies and products in healthcare. The added value of the development of new technologies in healthcare is diagnosed. The work is both theoretical and practical in nature. The primary research methods are bibliographic analysis and analysis of research data and market potential of new solutions for healthcare organisations. The bibliographic analysis is complemented by the author's case studies of implemented technologies, mostly based on artificial intelligence or telemedicine. In the past, patients were often passive recipients, the end point of the service delivery system, rather than stakeholders in the system. One of the dangers of powerful new technologies is that patients may become even more marginalised. Healthcare will be provided and delivered in an increasingly administrative, programmed way. The doctor may also become a robot, carrying out programmed activities - using 'non-human services'. An alternative approach is to put the patient at the centre, using technologies, products, and services that allow them to design and control technologies based on their own needs. An important contribution to the discussion is to open up the different dimensions of the user (carer and patient) and to make them aware of healthcare units implementing new technologies. The authors of this article outline the importance of three types of patients in the successful implementation of new medical solutions. The impact of implemented technologies is analysed based on: 1) "Informed users", who are able to use the technology based on a better understanding of it; 2) "Engaged users" who play an active role in the broader healthcare system as a result of the technology; 3) "Innovative users" who bring their own ideas to the table based on a deeper understanding of healthcare issues. The authors' research hypothesis is that the distinction between informed, engaged, and innovative users has an impact on the perceived and actual quality of healthcare services. The analysis is based on case studies of new solutions implemented in different medical centres. In addition, based on the observations of the Polish author, who is a manager at the largest medical research institute in Poland, with analytical input from American and Norwegian partners, the added value of the implementations for patients, clinicians, and the healthcare system will be demonstrated.Keywords: innovation, management, medicine, e-health, artificial intelligence
Procedia PDF Downloads 22166 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores
Abstract:
This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino
Procedia PDF Downloads 174165 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation
Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen
Abstract:
Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling
Procedia PDF Downloads 90164 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube
Authors: Nirjhar Dhang, S. Vinay Kumar
Abstract:
Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.Keywords: concrete, image processing, plane strain, interfacial transition zone
Procedia PDF Downloads 241163 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran
Authors: Fatemeh Faramarzi, Hosein Mahjoob
Abstract:
Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6
Procedia PDF Downloads 313162 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 253161 Using Real Truck Tours Feedback for Address Geocoding Correction
Authors: Dalicia Bouallouche, Jean-Baptiste Vioix, Stéphane Millot, Eric Busvelle
Abstract:
When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically.Keywords: driver experience feedback, geocoding correction, real truck tours
Procedia PDF Downloads 675160 Regional Rates of Sand Supply to the New South Wales Coast: Southeastern Australia
Authors: Marta Ribo, Ian D. Goodwin, Thomas Mortlock, Phil O’Brien
Abstract:
Coastal behavior is best investigated using a sediment budget approach, based on the identification of sediment sources and sinks. Grain size distribution over the New South Wales (NSW) continental shelf has been widely characterized since the 1970’s. Coarser sediment has generally accumulated on the outer shelf, and/or nearshore zones, with the latter related to the presence of nearshore reef and bedrocks. The central part of the NSW shelf is characterized by the presence of fine sediments distributed parallel to the coastline. This study presents new grain size distribution maps along the NSW continental shelf, built using all available NSW and Commonwealth Government holdings. All available seabed bathymetric data form prior projects, single and multibeam sonar, and aerial LiDAR surveys were integrated into a single bathymetric surface for the NSW continental shelf. Grain size information was extracted from the sediment sample data collected in more than 30 studies. The information extracted from the sediment collections varied between reports. Thus, given the inconsistency of the grain size data, a common grain size classification was her defined using the phi scale. The new sediment distribution maps produced, together with new detailed seabed bathymetric data enabled us to revise the delineation of sediment compartments to more accurately reflect the true nature of sediment movement on the inner shelf and nearshore. Accordingly, nine primary mega coastal compartments were delineated along the NSW coast and shelf. The sediment compartments are bounded by prominent nearshore headlands and reefs, and major river and estuarine inlets that act as sediment sources and/or sinks. The new sediment grain size distribution was used as an input in the morphological modelling to quantify the sediment transport patterns (and indicative rates of transport), used to investigate sand supply rates and processes from the lower shoreface to the NSW coast. The rate of sand supply to the NSW coast from deep water is a major uncertainty in projecting future coastal response to sea-level rise. Offshore transport of sand is generally expected as beaches respond to rising sea levels but an onshore supply from the lower shoreface has the potential to offset some of the impacts of sea-level rise, such as coastline recession. Sediment exchange between the lower shoreface and sub-aerial beach has been modelled across the south, central, mid-north and far-north coast of NSW. Our model approach is that high-energy storm events are the primary agents of sand transport in deep water, while non-storm conditions are responsible for re-distributing sand within the beach and surf zone.Keywords: New South Wales coast, off-shore transport, sand supply, sediment distribution maps
Procedia PDF Downloads 228159 Employers’ Preferences when Employing Solo Self-employed: a Vignette Study in the Netherlands
Authors: Lian Kösters, Wendy Smits, Raymond Montizaan
Abstract:
The number of solo self-employed in the Netherlands has been increasing for years. The relative increase is among the largest in the EU. To explain this increase, most studies have focused on the supply side, workers who offer themselves as solo self-employed. The number of studies that focus on the demand side, the employer who hires the solo self-employed, is still scarce. Studies into employer behaviour conducted until now show that employers mainly choose self-employed workers when they have a temporary need for specialist knowledge, but also during projects or production peaks. These studies do not provide insight into the employers’ considerations for different contract types. In this study, interviews with employers were conducted, and available literature was consulted to provide an overview of the several factors employers use to compare different contract types. That input was used to set up a vignette study. This was carried out at the end of 2021 among almost 1000 business owners, HR managers, and business leaders of Dutch companies. Each respondent was given two sets of five fictitious candidates for two possible positions in their organization. They were asked to rank these candidates. The positions varied with regard to the type of tasks (core tasks or support tasks) and the time it took to train new people for the position. The respondents were asked additional questions about the positions, such as the required level of education, the duration, and the degree of predictability of tasks. The fictitious candidates varied, among other things, in the type of contract on which they would come to work for the organization. The results were analyzed using a rank-ordered logit analysis. This vignette setup makes it possible to see which factors are most important for employers when choosing to hire a solo self-employed person compared to other contracts. The results show that there are no indications that employers would want to hire solo self-employed workers en masse. They prefer regular employee contracts. The probability of being chosen with a solo self-employed contract over someone who comes to work as a temporary employee is 32 percent. This probability is even lower than for on-call and temporary agency workers. For a permanent contract, this probability is 46 percent. The results provide indications that employers consider knowledge and skills more important than the solo self-employed contract and that this can compensate. A solo self-employed candidate with 10 years of work experience has a 63 percent probability of being found attractive by an employer compared to a temporary employee without work experience. This suggests that employers are willing to give someone a less attractive contract for the employer if the worker so wishes. The results also show that the probability that a solo self-employed person is preferred over a candidate with a temporary employee contract is somewhat higher in business economics, administrative and technical professions. No significant results were found for factors where it was expected that solo self-employed workers are preferred more often, such as for unpredictable or temporary work.Keywords: employer behaviour, rank-ordered logit analysis, solo self-employment, temporary contract, vignette study
Procedia PDF Downloads 73158 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems
Procedia PDF Downloads 135157 Religiosity and Involvement in Purchasing Convenience Foods: Using Two-Step Cluster Analysis to Identify Heterogenous Muslim Consumers in the UK
Authors: Aisha Ijaz
Abstract:
The paper focuses on the impact of Muslim religiosity on convenience food purchases and involvement experienced in a non-Muslim culture. There is a scarcity of research on the purchasing patterns of Muslim diaspora communities residing in risk societies, particularly in contexts where there is an increasing inclination toward industrialized food items alongside a renewed interest in the concept of natural foods. The United Kingdom serves as an appropriate setting for this study due to the increasing Muslim population in the country, paralleled by the expanding Halal Food Market. A multi-dimensional framework is proposed, testing for five forms of involvement, specifically Purchase Decision Involvement, Product Involvement, Behavioural Involvement, Intrinsic Risk and Extrinsic Risk. Quantitative cross-sectional consumer data were collected through a face-to-face survey contact method with 141 Muslims during the summer of 2020 in Liverpool located in the Northwest of England. proportion formula was utilitsed, and the population of interest was stratified by gender and age before recruitment took place through local mosques and community centers. Six input variables were used (intrinsic religiosity and involvement dimensions), dividing the sample into 4 clusters using the Two-Step Cluster Analysis procedure in SPSS. Nuanced variances were observed in the type of involvement experienced by religiosity group, which influences behaviour when purchasing convenience food. Four distinct market segments were identified: highly religious ego-involving (39.7%), less religious active (26.2%), highly religious unaware (16.3%), less religious concerned (17.7%). These segments differ significantly with respects to their involvement, behavioural variables (place of purchase and information sources used), socio-cultural (acculturation and social class), and individual characteristics. Choosing the appropriate convenience food is centrally related to the value system of highly religious ego-involving first-generation Muslims, which explains their preference for shopping at ethnic food stores. Less religious active consumers are older and highly alert in information processing to make the optimal food choice, relying heavily on product label sources. Highly religious unaware Muslims are less dietary acculturated to the UK diet and tend to rely on digital and expert advice sources. The less-religious concerned segment, who are typified by younger age and third generation, are engaged with the purchase process because they are worried about making unsuitable food choices. Research implications are outlined and potential avenues for further explorations are identified.Keywords: consumer behaviour, consumption, convenience food, religion, muslims, UK
Procedia PDF Downloads 57156 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency
Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva
Abstract:
This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium
Procedia PDF Downloads 234155 Teaching Academic Writing for Publication: A Liminal Threshold Experience Towards Development of Scholarly Identity
Authors: Belinda du Plooy, Ruth Albertyn, Christel Troskie-De Bruin, Ella Belcher
Abstract:
In the academy, scholarliness or intellectual craftsmanship is considered the highest level of achievement, culminating in being consistently successfully published in impactful, peer-reviewed journals and books. Scholarliness implies rigorous methods, systematic exposition, in-depth analysis and evaluation, and the highest level of critical engagement and reflexivity. However, being a scholar does not happen automatically when one becomes an academic or completes graduate studies. A graduate qualification is an indication of one’s level of research competence but does not necessarily prepare one for the type of scholarly writing for publication required after a postgraduate qualification has been conferred. Scholarly writing for publication requires a high-level skillset and a specific mindset, which must be intentionally developed. The rite of passage to become a scholar is an iterative process with liminal spaces, thresholds, transitions, and transformations. The journey from researcher to published author is often fraught with rejection, insecurity, and disappointment and requires resilience and tenacity from those who eventually triumph. It cannot be achieved without support, guidance, and mentorship. In this article, the authors use collective auto-ethnography (CAE) to describe the phases and types of liminality encountered during the liminal journey toward scholarship. The authors speak as long-time facilitators of Writing for Academic Publication (WfAP) capacity development events (training workshops and writing retreats) presented at South African universities. Their WfAP facilitation practice is structured around experiential learning principles that allow them to act as critical reading partners and reflective witnesses for the writer-participants of their WfAP events. They identify three essential facilitation features for the effective holding of a generative, liminal, and transformational writing space for novice academic writers in order to enable their safe passage through the various liminal spaces they encounter during their scholarly development journey. These features are that facilitators should be agents of disruption and liminality while also guiding writers through these liminal spaces; that there should be a sense of mutual trust and respect, shared responsibility and accountability in order for writers to produce publication-worthy scholarly work; and that this can only be accomplished with the continued application of high levels of sensitivity and discernment by WfAP facilitators. These are key features for successful WfAP scholarship training events, where focused, individual input triggers personal and professional transformational experiences, which in turn translate into high-quality scholarly outputs.Keywords: academic writing, liminality, scholarship, scholarliness, threshold experience, writing for publication
Procedia PDF Downloads 44154 The Properties of Risk-based Approaches to Asset Allocation Using Combined Metrics of Portfolio Volatility and Kurtosis: Theoretical and Empirical Analysis
Authors: Maria Debora Braga, Luigi Riso, Maria Grazia Zoia
Abstract:
Risk-based approaches to asset allocation are portfolio construction methods that do not rely on the input of expected returns for the asset classes in the investment universe and only use risk information. They include the Minimum Variance Strategy (MV strategy), the traditional (volatility-based) Risk Parity Strategy (SRP strategy), the Most Diversified Portfolio Strategy (MDP strategy) and, for many, the Equally Weighted Strategy (EW strategy). All the mentioned approaches were based on portfolio volatility as a reference risk measure but in 2023, the Kurtosis-based Risk Parity strategy (KRP strategy) and the Minimum Kurtosis strategy (MK strategy) were introduced. Understandably, they used the fourth root of the portfolio-fourth moment as a proxy for portfolio kurtosis to work with a homogeneous function of degree one. This paper contributes mainly theoretically and methodologically to the framework of risk-based asset allocation approaches with two steps forward. First, a new and more flexible objective function considering a linear combination (with positive coefficients that sum to one) of portfolio volatility and portfolio kurtosis is used to alternatively serve a risk minimization goal or a homogeneous risk distribution goal. Hence, the new basic idea consists in extending the achievement of typical risk-based approaches’ goals to a combined risk measure. To give the rationale behind operating with such a risk measure, it is worth remembering that volatility and kurtosis are expressions of uncertainty, to be read as dispersion of returns around the mean and that both preserve adherence to a symmetric framework and consideration for the entire returns distribution as well, but also that they differ from each other in that the former captures the “normal” / “ordinary” dispersion of returns, while the latter is able to catch the huge dispersion. Therefore, the combined risk metric that uses two individual metrics focused on the same phenomena but differently sensitive to its intensity allows the asset manager to express, in the context of an objective function by varying the “relevance coefficient” associated with the individual metrics, alternatively, a wide set of plausible investment goals for the portfolio construction process while serving investors differently concerned with tail risk and traditional risk. Since this is the first study that also implements risk-based approaches using a combined risk measure, it becomes of fundamental importance to investigate the portfolio effects triggered by this innovation. The paper also offers a second contribution. Until the recent advent of the MK strategy and the KRP strategy, efforts to highlight interesting properties of risk-based approaches were inevitably directed towards the traditional MV strategy and SRP strategy. Previous literature established an increasing order in terms of portfolio volatility, starting from the MV strategy, through the SRP strategy, arriving at the EQ strategy and provided the mathematical proof for the “equalization effect” concerning marginal risks when the MV strategy is considered, and concerning risk contributions when the SRP strategy is considered. Regarding the validity of similar conclusions when referring to the MK strategy and KRP strategy, the development of a theoretical demonstration is still pending. This paper fills this gap.Keywords: risk parity, portfolio kurtosis, risk diversification, asset allocation
Procedia PDF Downloads 65153 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines
Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky
Abstract:
Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods
Procedia PDF Downloads 113152 Fuzzy Availability Analysis of a Battery Production System
Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz
Abstract:
In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)
Procedia PDF Downloads 225151 Exploring Disengaging and Engaging Behavior of Doctoral Students
Authors: Salome Schulze
Abstract:
The delay of students in completing their dissertations is a worldwide problem. At the University of South Africa where this research was done, only about a third of the students complete their studies within the required period of time. This study explored the reasons why the students interrupted their studies, and why they resumed their research at a later stage. If this knowledge could be utilised to improve the throughput of doctoral students, it could have significant economic benefits for institutions of higher education while at the same time enhancing their academic prestige. To inform the investigation, attention was given to key theories concerning the learning of doctoral students, namely the situated learning theory, the social capital theory and the self-regulated learning theory, based on the social cognitive theory of learning. Ten students in the faculty of Education were purposefully selected on the grounds of their poor progress, or of having been in the system for too long. The collection of the data was in accordance with a Finnish study, since the two studies had the same aims, namely to investigate student engagement and disengagement. Graphic elicitation interviews, based on visualisations were considered appropriate to collect the data. This method could stimulate the reflection and recall of the participants’ ‘stories’ with very little input from the interviewer. The interviewees were requested to visualise, on paper, their journeys as doctoral students from the time when they first registered. They were to indicate the significant events that occurred and which facilitated their engagement or disengagement. In the interviews that followed, they were requested to elaborate on these motivating or challenging events by explaining when and why they occurred, and what prompted them to resume their studies. The interviews were tape-recorded and transcribed verbatim. Information-rich data were obtained containing visual metaphors. The data indicated that when the students suffered a period of disengagement, it was sometimes related to a lack of self-regulated learning, in particular, a lack of autonomy, and the inability to manage their time effectively. When the students felt isolated from the academic community of practice disengagement also occurred. This included poor guidance by their supervisors, which accordingly deprived them of significant social capital. The study also revealed that situational factors at home or at work were often the main reasons for the students’ procrastinating behaviour. The students, however, remained in the system. They were motivated towards a renewed engagement with their studies if they were self-regulated learners, and if they felt a connectedness with the academic community of practice because of positive relationships with their supervisors and of participation in the activities of the community (e.g., in workshops or conferences). In support of their learning, networking with significant others who were sources of information provided the students with the necessary social capital. Generally, institutions of higher education cannot address the students’ personal issues directly, but they can deal with key institutional factors in order to improve the throughput of doctoral students. It is also suggested that graphic elicitation interviews be used more often in social research that investigates the learning and development of the students.Keywords: doctoral students, engaging and disengaging experiences, graphic elicitation interviews, student procrastination
Procedia PDF Downloads 194