Search results for: green additive
696 Calcium ion Cross-linked HEC/SA/HA hydrogel: Fabrication, Characterization and Wound Healing Applications
Authors: Fathima Shahitha, Alqasim Al-Mamari, Mohammed Al-Sibani, Ahmed Al Harrasi
Abstract:
The aim of this study is to prepare a novel antibacterial wound healing hydrogel based on hydroxyethyl cellulose/ Sodium alginate/ hyaluronic acid (HEC/SA/HA) and Ag nanoparticles, which is cross-linked via Ca2+ ions. The aim of the study is to obtain a hydrogel compound using green chemistry that helps to heal the wound faster and better. The properties and structure of the hydrogel have been tested to include swelling ratio, vitro degradation, antibacterial and antifungal activity and wound healing tests. It was also characterized via UV-Vis, FTIR, TEM, TGA and tested after it was fabricated by freeze-drying technique. The characteristic peak of UV-Vis spectra revealed the formation of AgNPs in the compound at 411 nm. The FTIR curves showed new peaks that confirmed the oxidation of HEC and also showed the chemical interaction of the three polymers with AgNPs and Ca2+. The TEM images presented monodispersed of AgNPs with their size ranging ( 8.2 to 32 nm ). The results from these studies showed that the hydrogel has an excellent performance in swelling ratio and vitro degradation. Furthermore, the wound healing activity of the hydrogel was examined via measuring the closure of wound and the second group treated with hydrogel revealed a significant healing activity compared to the control group. The hydrogel activity against bacteria and fungi was also measures for 72 h and the results showed excellent performance. These results suggested that the cross-linked hydrogel based on (HEC/HA/SA) with AgNPs might be a promising dressing for wounds.Keywords: hydrogels, wound healing, hydroxyethyl cellulose, sodium alginate, Ca2+ cross-linking, hyaluronic acid
Procedia PDF Downloads 11695 Energy Efficient Buildings in Tehran by Reviewing High-Tech Methods and Vernacular Architecture Principles
Authors: Shima Naderi, Abbas Abbaszadeh Shahri
Abstract:
Energy resources are reachable and affordable in Iran, thus surplus access to fossil fuels besides high level of economic growth leads to serious environmental critical such as pollutants and greenhouse gases in the atmosphere, increase in average degrease and lack of water sources specially in Tehran as a capital city of Iran. As building sector consumes a huge portion of energy, taking actions towards alternative sources of energy as well as conserving non-renewable energy resources and architectural energy saving methods are the fundamental basis for achieving sustainability`s goals. This study tries to explore implantation of both high technologies and traditional issues for reduction of energy demands in buildings of Tehran and introduce some factors and instructions for achieving this purpose. Green and energy efficient buildings such as ZEBs make it possible to preserve natural resources for the next generations by reducing pollution and increasing ecosystem self-recovery. However ZEB is not widely spread in Iran because of its low economic efficiency, it is not viable for a private entrepreneur without the governmental supports. Therefore executing of Architectural Energy Efficiency can be a better option. It is necessary to experience a substructure expansion with respect to traditional residential building style. Renewable energies and passive design which are the substantial part of the history of architecture in Iran can be regenerated and employed as an essential part of designing energy efficient buildings.Keywords: architectural energy efficiency, passive design, renewable energies, zero energy buildings
Procedia PDF Downloads 360694 Improved Reuse and Storage Performances at Room Temperature of a New Environmental-Friendly Lactate Oxidase Biosensor Made by Ambient Electrospray Deposition
Authors: Antonella Cartoni, Mattea Carmen Castrovilli
Abstract:
A biosensor for lactate detection has been developed using an environmentally friendly approach. The biosensor is based on lactate oxidase (LOX) and has remarkable capabilities for reuse and storage at room temperature. The manufacturing technique employed is ambient electrospray deposition (ESD), which enables efficient and sustainable immobilization of the LOX enzyme on a cost-effective com-mercial screen-printed Prussian blue/carbon electrode (PB/C-SPE). The study demonstrates that the ESD technology allows the biosensor to be stored at ambient pressure and temperature for extended periods without affecting the enzymatic activity. The biosensor can be stored for up to 90 days without requiring specific storage conditions, and it can be reused for up to 24 measurements on both freshly prepared electrodes and electrodes that are three months old. The LOX-based biosensor exhibits a lin-ear range of lactate detection between 0.1 and 1 mM, with a limit of detection of 0.07±0.02 mM. Ad-ditionally, it does not exhibit any memory effects. The immobilization process does not involve the use of entrapment matrices or hazardous chemicals, making it environmentally sustainable and non-toxic compared to current methods. Furthermore, the application of a electrospray deposition cycle on previously used biosensors rejuvenates their performance, making them comparable to freshly made biosensors. This highlights the excellent recycling potential of the technique, eliminating the waste as-sociated with disposable devices.Keywords: green friendly, reuse, storage performance, immobilization, matrix-free, electrospray deposition, biosensor, lactate oxidase, enzyme
Procedia PDF Downloads 66693 Characterization of Volatile Compounds in Meat Lamb Fed in Different Algeria Pasture
Authors: Nabila Berrighi, Kaddour Bouderoua, Maria Khossif, Gema Nieto, Gaspar Ros
Abstract:
Ruminant meat is an important source of nutrients and is also of high sensory value. However, the importance and nature of these characteristics depend on ruminant nutrition. The objective of this study is to assess the effect of two Algerian feeding systems applied in the steppic rearing area of Djelfa and in the highlands one of Tiaret on the growth performance of lambs and on their meat quality, especially on their aroma compounds of meat. At the beginning of the experiment, lambs had an average body weight of 34.04 kg, and 35.40 kg for the group reared at Highland (0% concentrate) and Steppe (30% concentrate), respectively. The incorporation of the concentrated feed in Steppe had a significant effect on slaughter weight compared to lambs fed only on pasture (Highland) (49.72 Kg vs. 42.06 Kg, P<0.05). Beyond the first month, animals from the Steppe one showed better weight gains compared to those from Highland (14.32Kg vs. 8.02 Kg, respectively, P<0,05). After slaughter, samples from the Longissimus thoracis were removed and analyzed. The results point to significant differences in the amounts of many of the predominant volatile compounds between both groups (p<0.05), such as Hexanal, 2-methyl-3-furanthiol and nonanal (8.92 μg/kg vs. 4.57 μg/kg), (8.88 μg/kg vs. 7.45 μg/kg) and (2.09 μ/kg vs. 1.02 μg/kg) associated with smells of green, boiling meat and orange fruit, respectively. These compounds, measured by olfactometry, derived from the oxidation of lipids and appear to be responsible for the characteristic flavor of lamb meat in the steppe compared to that generated by meat from animals from the Highland pastures. The Algerian Steppe ecosystem is very interesting for outdoor sheep breeding, which allows to obtain attractive sensory quality and in the production of typical lamb meat that can be considered as a label.Keywords: falvour, growth performance, lamb meat, steppe pasture
Procedia PDF Downloads 104692 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces
Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi
Abstract:
Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.Keywords: culture, pathogenic leptospiras, PCR, real time PCR
Procedia PDF Downloads 86691 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications
Authors: Fawad Ali, Mohammad Albakri
Abstract:
The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization
Procedia PDF Downloads 21690 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast
Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey
Abstract:
The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein
Procedia PDF Downloads 255689 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction
Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li
Abstract:
Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable
Procedia PDF Downloads 78688 Unraveling Language Contact through Syntactic Dynamics of ‘Also’ in Hong Kong and Britain English
Authors: Xu Zhang
Abstract:
This article unveils an indicator of language contact between English and Cantonese in one of the Outer Circle Englishes, Hong Kong (HK) English, through an empirical investigation into 1000 tokens from the Global Web-based English (GloWbE) corpus, employing frequency analysis and logistic regression analysis. It is perceived that Cantonese and general Chinese are contextually marked by an integral underlying thinking pattern. Chinese speakers exhibit a reliance on semantic context over syntactic rules and lexical forms. This linguistic trait carries over to their use of English, affording greater flexibility to formal elements in constructing English sentences. The study focuses on the syntactic positioning of the focusing subjunct ‘also’, a linguistic element used to add new or contrasting prominence to specific sentence constituents. The English language generally allows flexibility in the relative position of 'also’, while there is a preference for close marking relationships. This article shifts attention to Hong Kong, where Cantonese and English converge, and 'also' finds counterparts in Cantonese ‘jaa’ and Mandarin ‘ye’. Employing a corpus-based data-driven method, we investigate the syntactic position of 'also' in both HK and GB English. The study aims to ascertain whether HK English exhibits a greater 'syntactic freedom,' allowing for a more distant marking relationship with 'also' compared to GB English. The analysis involves a random extraction of 500 samples from both HK and GB English from the GloWbE corpus, forming a dataset (N=1000). Exclusions are made for cases where 'also' functions as an additive conjunct or serves as a copulative adverb, as well as sentences lacking sufficient indication that 'also' functions as a focusing particle. The final dataset comprises 820 tokens, with 416 for GB and 404 for HK, annotated according to the focused constituent and the relative position of ‘also’. Frequency analysis reveals significant differences in the relative position of 'also' and marking relationships between HK and GB English. Regression analysis indicates a preference in HK English for a distant marking relationship between 'also' and its focused constituent. Notably, the subject and other constituents emerge as significant predictors of a distant position for 'also.' Together, these findings underscore the nuanced linguistic dynamics in HK English and contribute to our understanding of language contact. It suggests that future pedagogical practice should consider incorporating the syntactic variation within English varieties, facilitating leaners’ effective communication in diverse English-speaking environments and enhancing their intercultural communication competence.Keywords: also, Cantonese, English, focus marker, frequency analysis, language contact, logistic regression analysis
Procedia PDF Downloads 56687 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran
Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi
Abstract:
This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean
Procedia PDF Downloads 335686 From Conflicts to Synergies between Mitigation and Adaptation Strategies to Climate Change: The Case of Lisbon Downtown 2010-2030
Authors: Nuno M. Pereira
Abstract:
In the last thirty years, European cities have been addressing global climate change and its local impacts by implementing mitigation and adaptation strategies. Lisbon Downtown is no exception with 10 plans under implementation since 2010 with completion scheduled for 2030 valued 1 billion euros of public investment. However, the gap between mitigation and adaptation strategies is not yet sufficiently studied alongside with its nuances- vulnerability and risk mitigation, resilience and adaptation. In Lisbon Downtown, these plans are being implemented separately, therefore compromising the effectiveness of public investment. The research reviewed the common ground of mitigation and adaptation strategies of the theoretical framework and analyzed the current urban development actions in Lisbon Downtown in order to identify potential conflicts and synergies. The empirical fieldwork supported by a sounding board of experts has been developed during two years and the results suggest that the largest public investment in Lisbon on flooding mitigation will conflict with the new Cruise ship terminal and old Downton building stock, therefore increasing risk and vulnerability factors. The study concludes that the Lisbon Downtown blue infrastructure plan should be redesigned in some areas in a trans- disciplinary and holistic approach and that the current theoretical framework on climate change should focus more on mitigation and adaptation synergies articulating the gray, blue and green infrastructures, combining old knowledge tested by resilient communities and new knowledge emerging from the digital era.Keywords: adaptation, climate change, conflict, Lisbon Downtown, mitigation, synergy
Procedia PDF Downloads 201685 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 198684 Evaluation of Toxicity of Root-bark Powder of Securidaca Longepedunculata Enhanced with Diatomaceous Earth Fossilshield Against Callosobruchus Maculatus (F.) (Coleoptera-Bruchidea)
Authors: Mala Tankam Carine, Kekeunou Sévilor, Nukenine Elias
Abstract:
Storage and preservation of agricultural products remain the only conditions ensuring the almost permanent availability of foodstuffs. However, infestations due to insects and microorganisms often occur. Callosobruchus maculatus is a pest that causes a lot of damage to cowpea stocks in the tropics. Several methods are adopted to limit their damage, but the use of synthetic chemical insecticides is the most widespread. Biopesticides in sustainable agriculture respond to several environmental, economic and social concerns while offering innovative opportunities that are ecologically and economically viable for producers, workers, consumers and ecosystems. Our main objective is to evaluate the insecticidal efficacy of binary combinations of Fossilshield with root-bark powder of Securidaca longepedunculata against Callosobruchus maculatus in stored cowpea Vigna unguiculata. Laboratory bioassays were conducted in stored grains to evaluate the toxicity of root-bark powder of Securidaca longepedunculata alone or combined with diatomaceous earth Fossil-Shield ® against C. maculatus. Twenty-hour-old adults of C. maculatus were exposed to 50g of cowpea seeds treated with four doses (10, 20, 30, and 40g/kg) of root-bark powder of S. longepedunculata, on the one hand, and (0.5, 1, 1.5, and 2 g/kg) on DE and binary combinations on the other hand. 0g/kg corresponded to untreated control. Adult mortality was recorded up to 7 days (d) post-treatment, whereas the number of F1 progeny was assessed after 30 d. Weight loss and germinative ability were conducted after 120 d. All treatments were arranged according to a completely randomized block with four replicates. The combined mixture of S. longepedunculata and DE controlled the beetle faster compared to the root-bark powder of S. longepedunculata alone. According to the Co-toxicity coefficient, additive effect of binary combinations was recorded at 3-day post-exposure time with the mixture 25% FossilShield + 75% S. longepedunculata. A synergistic action was observed after 3-d post-exposure at mixture 50% FossilShield + 50% S. longepedunculata and at 1-d and 3-d post-exposure periods at mixture 75% FossilShield + 25% S. longepedunculata. The mixture 25% FossilShield + 75% S. longepedunculata induced a decreased progeny of 6 times fewer individuals for 4.5 times less weight loss and 2, 9 times more sprouted grains than with root-bark powder of S. longepedunculata. The combination of FossilShield + S. longepedunculata was more potent than root-bark powder of S. longepedunculata alone, although the root-bark powder of S. longepedunculata caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with FossilShield as a grain protectant in an integrated pest management approach is discussed.Keywords: diatomaceous earth, cowpea, callosobruchus maculatus, securidaca longepedunculata, combined action, co-toxicity coefficient
Procedia PDF Downloads 71683 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures
Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang
Abstract:
Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation
Procedia PDF Downloads 124682 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches
Authors: Guerich Mohamed, Assaf Samir
Abstract:
The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam
Procedia PDF Downloads 149681 Preparation of Fe3Si/Ferrite Micro-and Nano-Powder Composite
Authors: Radovan Bures, Madgalena Streckova, Maria Faberova, Pavel Kurek
Abstract:
Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.Keywords: micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties
Procedia PDF Downloads 364680 Geopolymer Concrete: A Review of Properties, Applications and Limitations
Authors: Abbas Ahmed Albu Shaqraa
Abstract:
The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength
Procedia PDF Downloads 222679 The Effect of Corporate Governance to Islamic Banking Performance Using Maqasid Index Approach in Indonesia
Authors: Audia Syafa'atur Rahman, Rozali Haron
Abstract:
The practices of Islamic banking are more attuned to the goals of profit maximization rather than obtaining ethical profit. Ethical profit is obtained from interest-free earnings and to give an impact which benefits to the growth of society and economy. Good corporate governance practices are needed to assure the sustainability of Islamic banks in order to achieve Maqasid Shariah with the main purpose of boosting the well-being of people. The Maqasid Shariah performance measurement is used to measure the duties and responsibilities expected to be performed by Islamic banks. It covers not only unification dimension like financial measurement, but also many dimensions covered to reflect the main purpose of Islamic banks. The implementation of good corporate governance is essential because it covers the interests of the stakeholders and facilitates effective monitoring to encourage Islamic banks to utilize resources more efficiently in order to achieve the Maqasid Shariah. This study aims to provide the empirical evidence on the Maqasid performance of Islamic banks in relation to the Maqasid performance evaluation model, to examine the influence of SSB characteristics and board structures to Islamic Banks performance as measured by Maqasid performance evaluation model. By employing the simple additive weighting method, Maqasid index for all the Islamic Banks in Indonesia within 2012 to 2016 ranged from above 11% to 28%. The Maqasid Syariah performance index where results reached above 20% are obtained by Islamic Banks such as Bank Muamalat Indonesia, Bank Panin Syariah, and Bank BRI Syariah. The consistent achievement above 23% is achieved by BMI. Other Islamic Banks such as Bank Victoria Syariah, Bank Jabar Banten Syariah, Bank BNI Syariah, Bank Mega Syariah, BCA Syariah, and Maybank Syariah Indonesia shows a fluctuating value of the Maqasid performance index every year. The impact of SSB characteristics and board structures are tested using random-effects generalized least square. The findings indicate that SSB characteristics (Shariah Supervisory Board size, Shariah Supervisory Board cross membership, Shariah Supervisory Board Education, and Shariah Supervisory Board reputation) and board structures (Board size and Board independence) have an essential role in improving the performance of Islamic Banks. The findings denote Shariah Supervisory Board with smaller size, higher portion of Shariah Supervisory Board cross membership; lesser Shariah Supervisory Board holds doctorate degree, lesser reputable scholar, more members on board of directors, and less independence non-executive directors will enhance the performance of Islamic Banks.Keywords: Maqasid Shariah, corporate governance, Islamic banks, Shariah supervisory board
Procedia PDF Downloads 242678 3D-Printing of Waveguide Terminations: Effect of Material Shape and Structuring on Their Characteristics
Authors: Lana Damaj, Vincent Laur, Azar Maalouf, Alexis Chevalier
Abstract:
Matched termination is an important part of the passive waveguide components. It is typically used at the end of a waveguide transmission line to prevent reflections and improve signal quality. Waveguide terminations (loads) are commonly used in microwave and RF applications. In traditional microwave architectures, usually, waveguide termination consists of a standard rectangular waveguide made by a lossy resistive material, and ended by shorting metallic plate. These types of terminations are used, to dissipate the energy as heat. However, these terminations may increase the size and the weight of the overall system. New alternative solution consists in developing terminations based on 3D-printing of materials. Designing such terminations is very challenging since it should meet the requirements imposed by the system. These requirements include many parameters such as the absorption, the power handling capability in addition to the cost, the size and the weight that have to be minimized. 3D-printing is a shaping process that enables the production of complex geometries. It allows to find best compromise between requirements. In this paper, a comparison study has been made between different existing and new shapes of waveguide terminations. Indeed, 3D printing of absorbers makes it possible to study not only standard shapes (wedge, pyramid, tongue) but also more complex topologies such as exponential ones. These shapes have been designed and simulated using CST MWS®. The loads have been printed using the carbon-filled PolyLactic Acid, conductive PLA from ProtoPasta. Since the terminations has been characterized in the X-band (from 8GHz to 12GHz), the rectangular waveguide standard WR-90 has been selected. The classical wedge shape has been used as a reference. First, all loads have been simulated with the same length and two parameters have been compared: the absorption level (level of |S11|) and the dissipated power density. This study shows that the concave exponential pyramidal shape has the better absorption level and the convex exponential pyramidal shape has the better dissipated power density level. These two loads have been printed in order to measure their properties. A good agreement between the simulated and measured reflection coefficient has been obtained. Furthermore, a study of material structuring based on the honeycomb hexagonal structure has been investigated in order to vary the effective properties. In the final paper, the detailed methodology and the simulated and measured results will be presented in order to show how 3D-printing can allow controlling mass, weight, absorption level and power behaviour.Keywords: additive manufacturing, electromagnetic composite materials, microwave measurements, passive components, power handling capacity (PHC), 3D-printing
Procedia PDF Downloads 22677 Geodesign Application for Bio-Swale Design: A Data-Driven Design Approach for a Case Site in Ottawa Street North in Hamilton, Ontario, Canada
Authors: Adele Pierre, Nadia Amoroso
Abstract:
Changing climate patterns are resulting in increased in storm severity, challenging traditional methods of managing stormwater runoff. This research compares a system of bioswales to existing curb and gutter infrastructure in a post-industrial streetscape of Hamilton, Ontario. Using the geodesign process, including rule-based set parameters and an integrated approach combining geospatial information with stakeholder input, a section of Ottawa St. North was modelled to show how green infrastructure can ease the burden on aging, combined sewer systems. Qualitative data was gathered from residents of the neighbourhood through field notes, and quantitative geospatial data through GIS and site analysis. Parametric modelling was used to generate multiple design scenarios, each visualizing resulting impacts on stormwater runoff along with their calculations. The selected design scenarios offered both an aesthetically pleasing urban bioswale street-scape system while minimizing and controlling stormwater runoff. Interactive maps, videos and the 3D model were presented for stakeholder comment via ESRI’s (Environmental System Research Institute) web-scene. The results of the study demonstrate powerful tools that can assist landscape architects in designing, collaborating and communicating stormwater strategies.Keywords: bioswale, geodesign, data-driven and rule-based design, geodesign, GIS, stormwater management
Procedia PDF Downloads 182676 Environmental Performance of Different Lab Scale Chromium Removal Processes
Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou
Abstract:
Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.Keywords: chromium, lab scale, life cycle assessment, wastewater
Procedia PDF Downloads 265675 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant
Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić
Abstract:
In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies
Procedia PDF Downloads 92674 History of Textiles and Fashion: Gender Symbolism in the Context of Colour
Authors: Damayanthie Eluwawalage
Abstract:
Historically, the color-coded attire demarcated differences, for example, differences in social position and differences in gender, etc. Distinctive colors are worn by different classes in medieval England. By the twentieth-century Western society, certain colors were firmly associated with the specific gender; as pink for girls, and blue for boys. The color-coded gender phenomenon was a novelty at the turn of the twentieth-century and became widely practiced after World War II. Prior to that era, there were no distinctions or differences in the dress of younger children, in relation to their gender. In the nineteenth century, pink suits were highly acceptable for gentlemen’s attire. Frenchmen in the eighteenth-century wore colors with an infinite range of hues like pink, plum, white, cream, blue, yellow, puce and sea green. Nineteenth-century European male austerity, primarily caused by the usage of sombre colors such as black, white and grey, has been described as an element for dignity, control and morality. In the nineteenth century, there were many color-associated distinctions, as certain colors were reserved for the unmarried, the single or the aged. Two luminous colors in one dress was ‘vulgar’ and yellow was generally regarded as unladylike. Yellow was the color utilised for most correctional attire. Orange was prohibited for the unmarried. Fashionable dressing in the nineteenth century was more gender-differentiated than in previous centuries. Masculine austerity, emphasized a shift in class relations. As a result of that shift, male attire became more uniform, homogeneous and integrated (amongst the classes), than its traditional hierarchal approach.Keywords: textiles, fashion, gender symbolism, color
Procedia PDF Downloads 493673 Framing a Turkish Campus Sustainability Indicator Set
Authors: Cansu Tari, Ute Poerschke
Abstract:
Sustainable campus design and planning in Higher Education requires an entire action plan and coordination of physical, educational, and social systems. Many institutions in the world are defining their sustainable development path and some are following existing green building and sustainable campus rating/ranking systems, guidelines. In the context of higher education, Turkish universities have limited academic, social and financial support related to sustainable living, building, and campus studies. While some research has been conducted in the last 60 years by farsighted academics, most of these works are based on individuals’ or small organizations’ own interests and efforts, and they are not known enough by the population of universities and possible prospective investors. Regarding the recent fast and uncontrolled growth in the Turkish Higher Education environment, setting a campus sustainability indicator set is a necessity for sustainable development of universities. The main objective of this paper is to specify the applicable sustainability indicators in the national context of Turkey, and propose a model guideline for sustainable Turkish university campuses. The analysis of Turkish legislation on environmental issues, special conditions of Turkish Higher Education system, and Turkey’s environmental risks and challenges set the backbone of the study and distinguish the set of indicators from generalized guidelines. Finally, the paper outlines some concrete suggestions for Turkish Universities to integrate sustainability efforts in their regional context. It will be useful for campus sustainability managers and planners, interested in developing action plans in their national and regional scope.Keywords: campus sustainability, sustainability indicators, Turkish universities, national campus sustainability action plan
Procedia PDF Downloads 260672 Agritourism Development Mode Study in Rural Area of Boshan China
Authors: Lingfei Sun
Abstract:
Based on the significant value of ecology, the strategic planning for ecological civilization construction was mentioned in the 17th and 18th National Congress of the Communist Party of China. How to generate economic value based on the environmental capacity is not only an economic decision but also a political decision to make. Boshan took the full use of “Ecology” and transformed it as an inexhaustible green resource to benefit people, reflecting the sustainable value of new agriculture development mode. The Strawberry Harvest Festival and Blueberry Harvest Festival hosted approximately 96,000 and 54,000 leisure tourists respectively in 2014. For the Kiwi Harvest Festival in August 2014, in average, it attracted about 4600 tourists per day, which generated daily kiwi sales of 50,000 lbs and 3 million RMB (About 476,000 USD) of daily revenue. The purpose of this study is to elaborate the modes of agritourism development, by analyzing the cases in rural area of Boshan, China. Interviews with the local government officers were applied to discover operation mode of agritourism operation. The financial data was used to demonstrate the strength of government policy and improvement of the income of rural people. The result indicated that there are mainly three types of modes: the Intensive Mode, the Model Mode and the Mixed Mode, supported by case study respectively. With the boom of tourism, the development of agritourism in Boshan relies on the agriculture encouraging policy of China and the effort of local government; meanwhile, large scale of cultivation and the product differentiation are the crucial elements for the success of rural agritourism projects.Keywords: agriculture, agritourism, economy, rural area development
Procedia PDF Downloads 310671 Determination of Coffee Colour Changes After Mill Grinding
Authors: Katarzyna Grądecka-Jakubowska, Rusinek Robert, Marek Gancarz
Abstract:
The aim of the study was to analyze the process of roasting coffee beans in a convection–conduction roaster (CC) without a heat exchanger and a convection–conduction–radiation roaster (CCR) with a heat exchanger for determination of the colour of the coffee beans and coffee colour after mill. Arabica coffee from the following countries (regions) was used for the study: (1) Ethiopia Refisha, (2) Guatemala Santa Barbara, (3) Honduras El Puente, (4) Kenya Baragwi, (5) Brazil Beyond. The coffee beans were roasted using two types of roasters: convection–conduction roaster (CC) without a heat exchanger and a convection–conduction–radiation roaster (CCR) with a heat exchanger. The analysis of the color of coffee beans and ground coffee was carried out using the CIELab and RGB method using a Lovibond CAM-System 500 colorimeter (Great Britain). The device allows you to evaluate the color and record the image in a resolution of 752 × 582 pixels, saving each pixel as an RGB component. The time profile screen captured a sequence of images at fixed time intervals and displayed them on-line. The system, useful for assessing non-uniform or variable colors, allowed us to record the entire image or appropriate areas (surfaces) of the sample. Color is mathematically described by three components: L - lightness (luminance from 0 very to 100 very bright), (a) - color from green to magenta (from -120 to +120), (b) - color from blue to yellow (from -120 to +120). Coffee beans roasted in the Dietrich (CCR) roaster had a lighter colour, while those roasted in the Gothot (CC) roaster had a darker colour. In the case of ground coffee colour tests, coffee ground from beans roasted in the Dietrich (CCR) roaster also had a lighter colour, while coffee ground from beans roasted in the Gothot (CC) roaster had a darker colour.Keywords: coffee beans, ground coffee, colour, CIELab, RGB
Procedia PDF Downloads 9670 Oxidation Assessment of Mayonnaise with Headspace Single-Drop Microextarction (HS-SDME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS) during Shelf-Life
Authors: Kooshan Nayebzadeh, Maryam Enteshari, Abdorreza Mohammadi
Abstract:
The oxidative stability of mayonnaise under different storage temperatures (4 and 25˚C) during 6-month shelf-life was investigated by different analytical methods. In this study, headspace single-drop microextarction (HS-SDME) combined with gas chromatography-mass spectrometry (GC-MS) as a green, sensitive and rapid technique was applied to evaluate oxidative state in mayonnaise. Oxidation changes of extracted oil from mayonnaise were monitored by analytical parameters including peroxide value (PV), p-Anisidine value (p-An V), thiobarbituric acid value (TBA), and oxidative stability index (OSI). Hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-SDME/GC-MS method in mayonnaise matrix. The rate of oxidation in mayonnaises increased during storage and it was determined greater at 25 ˚C. The values of Anisidine and TBA were gradually enhanced during 6 months, while the amount of OSI decreased. At both temperatures, the content of hexanal was higher than heptanal during all storage periods. Also significant increments in hexanal and heptanal concentrations in the second and sixth month of storage have been observed. Hexanal concentrations in mayonnaises which were stored at 25 ˚C and during storage time showed the highest values. It can be concluded that the temperature and duration of storage time are definitive parameters which affect on quality and oxidative stability of mayonnaise. Additionally, hexanal content in comparison to heptanal is a more reliable oxidative indicator and HS-SDME/GC-MS can be applied in a quick and simple manner.Keywords: oxidative stability, mayonnaise, headspace single-drop microextarction (HS-SDME), shelf-life
Procedia PDF Downloads 419669 The Synthesis and Analysis of Two Long Lasting Phosphorescent Compounds: SrAl2O4: Eu2+, Dy3+
Authors: Ghayah Alsaleem
Abstract:
This research project focussed on specific compounds, whereas a literature review was completed on the broader subject of long-lasting phosphorescence. For the review and subsequent laboratory work, long lasting phosphorescence compounds were defined as materials that have an afterglow decay time greater than a few minutes. The decay time is defined as the time between the end of excitation and the moment the light intensity drops below 0.32mcd/m2. This definition is widely used in industry and in most research studies. The experimental work focused on known long-lasting phosphorescence compounds – strontium aluminate (SrAl2O4: Eu2+, Dy3+). At first, preparation was similar to literary methods. Temperature, dopant levels and mixing methods were then varied in order to expose their effects on long-lasting phosphorescence. The effect of temperature was investigated for SrAl2O4: Eu2+, Dy3+, and resulted in the discovery that 1350°C was the only temperature that the compound could be heated to in the Differential scanning calorimetry (DSC) in order to achieve any phosphorescence. However, no temperatures above 1350°C were investigated. The variation of mixing method and co-dopant level in the strontium aluminate compounds resulted in the finding that the dry mixing method using a Turbula mixer resulted in the longest afterglow. It was also found that an increase of europium inclusion, from 1mol% to 2mol% in these compounds, increased the brightest of the phosphorescence. As this increased batch was mixed using sonication, the phosphorescent time was actually reduced which produced green long-lasting phosphorescence for up to 20 minutes following 30 minutes excitation and 50 minutes when the europium content was doubled and mixed using sonication.Keywords: long lasting, phosphorescence, excitation, europium
Procedia PDF Downloads 181668 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation
Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour
Abstract:
In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38⸗ N, 42°52´02⸗ E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).Keywords: deficit irrigation, growth, sorghum-sudangrass hybrid, yield
Procedia PDF Downloads 141667 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment
Authors: Mazifah Simis, Azahan Awang, Kadir Arifin
Abstract:
The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception
Procedia PDF Downloads 355