Search results for: data sensitivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26513

Search results for: data sensitivity

24443 Blind Data Hiding Technique Using Interpolation of Subsampled Images

Authors: Singara Singh Kasana, Pankaj Garg

Abstract:

In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images.

Keywords: interpolation, image subsampling, PSNR, SIM

Procedia PDF Downloads 578
24442 Active Contours for Image Segmentation Based on Complex Domain Approach

Authors: Sajid Hussain

Abstract:

The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.

Keywords: image segmentation, active contour, level set, Mumford and Shah model

Procedia PDF Downloads 114
24441 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 157
24440 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
24439 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University

Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang

Abstract:

Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.

Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University

Procedia PDF Downloads 315
24438 Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms

Authors: Ali Mohamadi Sani

Abstract:

The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using microdilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to the essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans, while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P<0.05) antimicrobial activity; therefore, it can be used as a natural preservation to increase the shelf life of food products.

Keywords: Helichrysum arenarium, antimicrobial, essential oil, MIC

Procedia PDF Downloads 347
24437 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 66
24436 Adjunct Placement in Educated Nigerian English

Authors: Juliet Charles Udoudom

Abstract:

In nonnative language use environments, language users have been known to demonstrate marked variations both in the spoken and written productions of the target language. For instance, analyses of the written productions of Nigerian users of English have shown inappropriate sequencing of sentence elements resulting in distortions in meaning and/or other problems of syntax. This study analyses the structure of sentences in the written production of 450 educated Nigerian users of English to establish their sensitivity to adjunct placement and the extent to which it exerts on meaning interpretation. The respondents were selected by a stratified random sampling technique from six universities in south-south Nigeria using education as the main yardstick for stratification. The systemic functional grammar analytic format was used in analyzing the sentences selected from the corpus. Findings from the analyses indicate that of the 8,576 tokens of adjuncts in the entire corpus, 4,550 (53.05%) of circumstantial adjuncts were appropriately placed while 2,839 (33.11%) of modal adjuncts occurred at appropriate locations in the clauses analyzed. Conjunctive adjunct placement accounted for 1,187 occurrences, representing 13.84% of the entire corpus. Further findings revealed that prepositional phrases (PPs) were not well construed by respondents to be capable of realizing adjunct functions, and were inappropriately placed.

Keywords: adjunct, adjunct placement, conjunctive adjunct, circumstantial adjunct, systemic grammar

Procedia PDF Downloads 15
24435 A Metaheuristic Approach for Optimizing Perishable Goods Distribution

Authors: Bahare Askarian, Suchithra Rajendran

Abstract:

Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.

Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models

Procedia PDF Downloads 19
24434 Techno-Economic Prospects of High Wind Energy Share in Remote vs. Interconnected Island Grids

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

On the basis of comparative analysis of alternative “development scenarios” for electricity generation, the main objective of the present study is to investigate the techno-economic viability of high wind energy (WE) use at the local (island) level. An integrated theoretical model is developed based on first principles assuming two main possible scenarios for covering future electrification needs of a medium–sized Greek island, i.e. Lesbos. The first scenario (S1), assumes that the island will keep using oil products as the main source for electricity generation. The second scenario (S2) involves the interconnection of the island with the mainland grid to satisfy part of the electricity demand, while remarkable WE penetration is also achieved. The economic feasibility of the above solutions is investigated in terms of determining their Levelized Cost of Energy (LCOE) for the time-period 2020-2045, including also a sensitivity analysis on the worst/reference/best Cases. According to the results obtained, interconnection of Lesbos Island with the mainland grid (S2) presents considerable economic interest in comparison to autonomous development (S1) with WE having a prominent role to this effect.

Keywords: electricity generation cost, levelized cost of energy, mainland, wind energy surplus

Procedia PDF Downloads 342
24433 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: adaptive reuse, analytic network process, big data, land use strategy

Procedia PDF Downloads 203
24432 Interoperability Standard for Data Exchange in Educational Documents in Professional and Technological Education: A Comparative Study and Feasibility Analysis for the Brazilian Context

Authors: Giovana Nunes Inocêncio

Abstract:

The professional and technological education (EPT) plays a pivotal role in equipping students for specialized careers, and it is imperative to establish a framework for efficient data exchange among educational institutions. The primary focus of this article is to address the pressing need for document interoperability within the context of EPT. The challenges, motivations, and benefits of implementing interoperability standards for digital educational documents are thoroughly explored. These documents include EPT completion certificates, academic records, and curricula. In conjunction with the prior abstract, it is evident that the intersection of IT governance and interoperability standards holds the key to transforming the landscape of technical education in Brazil. IT governance provides the strategic framework for effective data management, aligning with educational objectives, ensuring compliance, and managing risks. By adopting interoperability standards, the technical education sector in Brazil can facilitate data exchange, enhance data security, and promote international recognition of qualifications. The utilization of the XML (Extensible Markup Language) standard further strengthens the foundation for structured data exchange, fostering efficient communication, standardization of curricula, and enhancing educational materials. The IT governance, interoperability standards, and data management critical role in driving the quality, efficiency, and security of technical education. The adoption of these standards fosters transparency, stakeholder coordination, and regulatory compliance, ultimately empowering the technical education sector to meet the dynamic demands of the 21st century.

Keywords: interoperability, education, standards, governance

Procedia PDF Downloads 70
24431 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems

Authors: Z. Bouattou, R. Laurini, H. Belbachir

Abstract:

This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.

Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems

Procedia PDF Downloads 400
24430 Need for Privacy in the Technological Era: An Analysis in the Indian Perspective

Authors: Amrashaa Singh

Abstract:

In the digital age and the large cyberspace, Data Protection and Privacy have become major issues in this technological era. There was a time when social media and online shopping websites were treated as a blessing for the people. But now the tables have turned, and the people have started to look at them with suspicion. They are getting aware of the privacy implications, and they do not feel as safe as they used to initially. When Edward Snowden informed the world about the snooping United States Security Agencies had been doing, that is when the picture became clear for the people. After the Cambridge Analytica case where the data of Facebook users were stored without their consent, the doubts arose in the minds of people about how safe they actually are. In India, the case of spyware Pegasus also raised a lot of concerns. It was used to snoop on a lot of human right activists and lawyers and the company which invented the spyware claims that it only sells it to the government. The paper will be dealing with the privacy concerns in the Indian perspective with an analytical methodology. The Supreme Court here had recently declared a right to privacy a Fundamental Right under Article 21 of the Constitution of India. Further, the Government is also working on the Data Protection Bill. The point to note is that India is still a developing country, and with the bill, the government aims at data localization. But there are doubts in the minds of many people that the Government would actually be snooping on the data of the individuals. It looks more like an attempt to curb dissenters ‘lawfully’. The focus of the paper would be on these issues in India in light of the European Union (EU) General Data Protection Regulation (GDPR). The Indian Data Protection Bill is also said to be loosely based on EU GDPR. But how helpful would these laws actually be is another concern since the economic and social conditions in both countries are very different? The paper aims at discussing these concerns, how good or bad is the intention of the government behind the bill, and how the nations can act together and draft common regulations so that there is some uniformity in the laws and their application.

Keywords: Article 21, data protection, dissent, fundamental right, India, privacy

Procedia PDF Downloads 114
24429 An Online 3D Modeling Method Based on a Lossless Compression Algorithm

Authors: Jiankang Wang, Hongyang Yu

Abstract:

This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.

Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image

Procedia PDF Downloads 82
24428 An Update on Linezolid against Methicillin-Resistant Staphylococcus Aureus Clinical Isolates from Pakistan

Authors: Tayaba Dastgeer, Farhan Rasheed, Muhammad Saeed, Maqsood Ahmad, Zia Ashraf, Abdul Waheed, Muhammad Kamran, Mohsin Khurshid

Abstract:

Objectives: The study aimed to determine the efficacy of linezolid against clinical isolates of methicillin-resistant staphylococcus aureus (MRSA). Methodology: This cross-sectional study was conducted in the microbiology department of Allama Iqbal Medical College Lahore from August 2017 to September 2019. Isolates were confirmed as MRSA via the presence of the mec-A gene. Confirmed MRSA isolates were processed for susceptibility testing against different antimicrobials, especially linezolid, via the disc diffusion method. Zone sizes were interpreted according to CLSI guidelines. Results: Various types of clinical samples were included in the study; however, the highest frequency of MRSA isolates was found in pus samples, followed by other clinical samples. Among hospitalized patients, most MRSA isolates were obtained from patients in the surgical ward. Of 243 mec-A gene detected isolates, Vancomycin and linezolid showed 100% susceptibility, chloramphenicol showed declining resistance 78 (32.09%), and emerging sensitivity 165 (67.90%) against MRSA. Conclusion: Linezolid is a very efficient drug against MRSA, but the use of this novel drug must be conserved for vancomycin-resistant Staphylococcus aureus or when more resistant pathogens are suspected.

Keywords: MRSA, chloramphenicol, linezolid, nosocomial infections

Procedia PDF Downloads 97
24427 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 320
24426 Logistics Information Systems in the Distribution of Flour in Nigeria

Authors: Cornelius Femi Popoola

Abstract:

This study investigated logistics information systems in the distribution of flour in Nigeria. A case study design was used and 50 staff of Honeywell Flour Mill was sampled for the study. Data generated through a questionnaire were analysed using correlation and regression analysis. The findings of the study revealed that logistic information systems such as e-commerce, interactive telephone systems and electronic data interchange positively correlated with the distribution of flour in Honeywell Flour Mill. Finding also deduced that e-commerce, interactive telephone systems and electronic data interchange jointly and positively contribute to the distribution of flour in Honeywell Flour Mill in Nigeria (R = .935; Adj. R2 = .642; F (3,47) = 14.739; p < .05). The study therefore recommended that Honeywell Flour Mill should upgrade their logistic information systems to computer-to-computer communication of business transactions and documents, as well adopt new technology such as, tracking-and-tracing systems (barcode scanning for packages and palettes), tracking vehicles with Global Positioning System (GPS), measuring vehicle performance with ‘black boxes’ (containing logistic data), and Automatic Equipment Identification (AEI) into their systems.

Keywords: e-commerce, electronic data interchange, flour distribution, information system, interactive telephone systems

Procedia PDF Downloads 553
24425 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 345
24424 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level

Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown

Abstract:

‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.

Keywords: data integration, data linkage, health planning, health services research

Procedia PDF Downloads 216
24423 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 147
24422 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 64
24421 Curcumin and Methotrexate Loaded Montmollilite Clay for Sustained Oral Drug Delivery Application

Authors: Subrata Kar, Banani Kundu, Papiya Nandy, Ruma Basu, Sukhen Das

Abstract:

Natural montmorilollite clay is a common ingredient in pharmaceutical products, both as excipients and active support; hence considered as suitable candidate for Drug Delivery System. In this work, cationic detergent CTAB is used to increase the interlayer spacing of Na+-Montmoriollite clay to intercalate curcumin and methotrexate. Methotrexate is a folic acid antagonist, anti-proliferative and immunosuppressive agent; while curcumin is a bioactive constituent of rhizomes of Curcuma longa, possessing remarkable chemo-preventive and anti-inflammatory properties. The resultant inorganic-organic hybrids are characterized by X-ray diffraction (XRD), Infrared spectroscopy (FTIR) and Thermo Gravimetric Analysis (TGA) to confirm successful intercalation of curcumin and Methotrexate within clay layers. Pharmaceutical investigation of the hybrids is explored by studying the drug loading (%), encapsulation efficiency and release kinetics. Finally in-vitro studies are performed using cancer cells to find the effect of released curcumin to improve the sensitivity of clay bound methotrexate to ameliorate cell death compared to their effectiveness when used without the inorganic aluminosilicate vehicle.

Keywords: montmorillonite, methotrexate, curcumin, loading efficiency, release kinetics, anticancer activity

Procedia PDF Downloads 515
24420 Development of Trigger Tool to Identify Adverse Drug Events From Warfarin Administered to Patient Admitted in Medical Wards of Chumphae Hospital

Authors: Puntarikorn Rungrattanakasin

Abstract:

Objectives: To develop the trigger tool to warn about the risk of bleeding as an adverse event from warfarin drug usage during admission in Medical Wards of Chumphae Hospital. Methods: A retrospective study was performed by reviewing the medical records for the patients admitted between June 1st,2020- May 31st, 2021. ADEs were evaluated by Naranjo’s algorithm. The international normalized ratio (INR) and events of bleeding during admissions were collected. Statistical analyses, including Chi-square test and Reciever Operating Characteristic (ROC) curve for optimal INR threshold, were used for the study. Results: Among the 139 admissions, the INR range was found to vary between 0.86-14.91, there was a total of 15 bleeding events, out of which 9 were mild, and 6 were severe. The occurrence of bleeding started whenever the INR was greater than 2.5 and reached the statistical significance (p <0.05), which was in concordance with the ROC curve and yielded 100 % sensitivity and 60% specificity in the detection of a bleeding event. In this regard, the INR greater than 2.5 was considered to be an optimal threshold to alert promptly for bleeding tendency. Conclusions: The INR value of greater than 2.5 (>2.5) would be an appropriate trigger tool to warn of the risk of bleeding for patients taking warfarin in Chumphae Hospital.

Keywords: trigger tool, warfarin, risk of bleeding, medical wards

Procedia PDF Downloads 148
24419 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
24418 Impact of Interdisciplinary Therapy Allied to Online Health Education on Cardiometabolic Parameters and Inflammation Factor Rating in Obese Adolescents

Authors: Yasmin A. M. Ferreira, Ana C. K. Pelissari, Sofia De C. F. Vicente, Raquel M. Da S. Campos, Deborah C. L. Masquio, Lian Tock, Lila M. Oyama, Flavia C. Corgosinho, Valter T. Boldarine, Ana R. Dâmaso

Abstract:

The prevalence of overweight and obesity is growing around the world and currently considered a global epidemic. Food and nutrition are essential requirements for promoting health and protecting non-communicable chronic diseases, such as obesity and cardiovascular disease. Specific dietary components may modulate the inflammation and oxidative stress in obese individuals. Few studies have investigated the dietary Inflammation Factor Rating (IFR) in obese adolescents. The IFR was developed to characterize an individual´s diet on anti- to pro-inflammatory score. This evaluation contributes to investigate the effects of inflammatory diet in metabolic profile in several individual conditions. Objectives: The present study aims to investigate the effects of a multidisciplinary weight loss therapy on inflammation factor rating and cardiometabolic risk in obese adolescents. Methods: A total of 26 volunteers (14-19 y.o) were recruited and submitted to 20 weeks interdisciplinary therapy allied to health education website- Ciclo do Emagrecimento®, including clinical, nutritional, psychological counseling and exercise training. The body weight was monitored weekly by self-report and photo. The adolescents answered a test to evaluate the knowledge of the topics covered in the videos. A 24h dietary record was applied at the baseline and after 20 weeks to assess the food intake and to calculate IFR. A negative IFR suggests that diet may have inflammatory effects and a positive IFR indicates an anti-inflammatory effect. Statistical analysis was performed using the program STATISTICA version 12.5 for Windows. The adopted significant value was α ≤ 5 %. Data normality was verified with the Kolmogorov Smirnov test. Data were expressed as mean±SD values. To analyze the effects of intervention it was applied test t. Pearson´s correlations test was performed. Results: After 20 weeks of treatment, body mass index (BMI), body weight, body fat (kg and %), abdominal and waist circumferences decreased significantly. The mean of high-density lipoprotein cholesterol (HDL-c) increased after the therapy. Moreover, it was found an improvement of inflammation factor rating from -427,27±322,47 to -297,15±240,01, suggesting beneficial effects of nutritional counselling. Considering the correlations analysis, it was found that pro-inflammatory diet is associated with increase in the BMI, very low-density lipoprotein cholesterol (VLDL), triglycerides, insulin and insulin resistance index (HOMA-IR); while an anti-inflammatory diet is associated with improvement of HDL-c and insulin sensitivity Check index (QUICKI). Conclusion: The 20-week blended multidisciplinary therapy was effective to reduce body weight, anthropometric circumferences and improve inflammatory markers in obese adolescents. In addition, our results showed that an increase in inflammatory profile diet is associated with cardiometabolic parameters, suggesting the relevance to stimulate anti-inflammatory diet habits as an effective strategy to treat and control of obesity and related comorbidities. Financial Support: FAPESP (2017/07372-1) and CNPq (409943/2016-9)

Keywords: cardiometabolic risk, inflammatory diet, multidisciplinary therapy, obesity

Procedia PDF Downloads 194
24417 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020

Authors: Salif Koné

Abstract:

We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.

Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation

Procedia PDF Downloads 95
24416 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps

Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam

Abstract:

GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.

Keywords: noise, image, GIS, digital map, inpainting

Procedia PDF Downloads 352
24415 Auditory Perception of Frequency-Modulated Sweeps and Reading Difficulties in Chinese

Authors: Hsiao-Lan Wang, Chun-Han Chiang, I-Chen Chen

Abstract:

In Chinese Mandarin, lexical tones play an important role to provide contrasts in word meaning. They are pitch patterns and can be quantified as the fundamental frequency (F0), expressed in Hertz (Hz). In this study, we aim to investigate the influence of frequency discrimination on Chinese children’s performance of reading abilities. Fifty participants from 3rd to 4th grades, including 24 children with reading difficulties and 26 age-matched children, were examined. A serial of cognitive, language, reading and psychoacoustic tests were administrated. Magnetoencephalography (MEG) was also employed to study children’s auditory sensitivity. In the present study, auditory frequency was measured through slide-up pitch, slide-down pitch and frequency-modulated tone. The results showed that children with Chinese reading difficulties were significantly poor at phonological awareness and auditory discrimination for the identification of frequency-modulated tone. Chinese children’s character reading performance was significantly related to lexical tone awareness and auditory perception of frequency-modulated tone. In our MEG measure, we compared the mismatch negativity (MMNm), from 100 to 200 ms, in two groups. There were no significant differences between groups during the perceptual discrimination of standard sounds, fast-up and fast-down frequencies. However, the data revealed significant cluster differences between groups in the slow-up and slow-down frequencies discrimination. In the slow-up stimulus, the cluster demonstrated an upward field map at 106-151 ms (p < .001) with a strong peak time at 127ms. The source analyses of two dipole model and localization resolution model (CLARA) from 100 to 200 ms both indicated a strong source from the left temporal area with 45.845% residual variance. Similar results were found in the slow-down stimulus with a larger upward current at 110-142 ms (p < 0.05) and a peak time at 117 ms in the left temporal area (47.857% residual variance). In short, we found a significant group difference in the MMNm while children processed frequency-modulated tones with slow temporal changes. The findings may imply that perception of sound frequency signals with slower temporal modulations was related to reading and language development in Chinese. Our study may also support the recent hypothesis of underlying non-verbal auditory temporal deficits accounting for the difficulties in literacy development seen developmental dyslexia.

Keywords: Chinese Mandarin, frequency modulation sweeps, magnetoencephalography, mismatch negativity, reading difficulties

Procedia PDF Downloads 576
24414 Evaluation of Urban Parks Based on POI Data: Taking Futian District of Shenzhen as an Example

Authors: Juanling Lin

Abstract:

The construction of urban parks is an important part of eco-city construction, and the intervention of big data provides a more scientific and rational platform for the assessment of urban parks by identifying and correcting the irrationality of urban park planning from the macroscopic level and then promoting the rational planning of urban parks. The study builds an urban park assessment system based on urban road network data and POI data, taking Futian District of Shenzhen as the research object, and utilizes the GIS geographic information system to assess the park system of Futian District in five aspects: park spatial distribution, accessibility, service capacity, demand, and supply-demand relationship. The urban park assessment system can effectively reflect the current situation of urban park construction and provide a useful exploration for realizing the rationality and fairness of urban park planning.

Keywords: urban parks, assessment system, POI, supply and demand

Procedia PDF Downloads 42