Search results for: wastewater collection system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20076

Search results for: wastewater collection system

19896 Effect of Thermal Energy on Inorganic Coagulation for the Treatment of Industrial Wastewater

Authors: Abhishek Singh, Rajlakshmi Barman, Tanmay Shah

Abstract:

Coagulation is considered to be one of the predominant water treatment processes which improve the cost effectiveness of wastewater. The sole purpose of this experiment on thermal coagulation is to increase the efficiency and the rate of reaction. The process uses renewable sources of energy which comprises of improved and minimized time method in order to eradicate the water scarcity of the regions which are on the brink of depletion. This paper includes the various effects of temperature on the standard coagulation treatment of wastewater and their effect on water quality. In addition, the coagulation is done with the mix of bottom/fly-ash that will act as an adsorbent and removes most of the minor and macro particles by means of adsorption which not only helps to reduce the environmental burden of fly ash but also enhance economic benefit. Also, the method of sand filtration is amalgamated in the process. The sand filter is an environmentally-friendly wastewater treatment method, which is relatively simple and inexpensive. The existing parameters were satisfied with the experimental results obtained in this study and were found satisfactory. The initial turbidity of the wastewater is 162 NTU. The initial temperature of the wastewater is 27 C. The temperature variation of the entire process is 50 C-80 C. The concentration of alum in wastewater is 60mg/L-320mg/L. The turbidity range is 8.31-28.1 NTU after treatment. pH variation is 7.73-8.29. The effective time taken is 10 minutes for thermal mixing and sedimentation. The results indicate that the presence of thermal energy affects the coagulation treatment process. The influence of thermal energy on turbidity is assessed along with renewable energy sources and increase of the rate of reaction of the treatment process.

Keywords: adsorbent, sand filter, temperature, thermal coagulation

Procedia PDF Downloads 301
19895 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 54
19894 Suitability of Indonesia's Tax Administration with Abu Yusuf Thought

Authors: Dina Safrina

Abstract:

This paper aims to discuss the suitability of tax administration in Indonesia based on Islamic Shari'a by looking at Abu Yusuf's idea of taxation. This research is a qualitative research and using data collection method by library research, that is by studying, deepening and citing theories or concepts from a number of literature. The purpose of this paper is to find out whether taxation in Indonesia is consistent with the thinking of Islamic economists, namely Abu Yusuf's idea which became known by economists as the canons of taxation. The ability to pay, lax time giving for taxpayers and the centralization of decision-making in the tax administration are some of the principles it emphasizes. In taxation he recommends the use of the Muqassamah (Proportional Tax) system rather than the Mixed (Fixed Tax) system. In this case, the determination of tax rates in Indonesia there are using fixed tax system, proportional tax, progressive tax and regressive tax. Abu Yusuf opposed the existence of Qabalah institution (the guarantor of tax payments to the state) at the time and suggested a tax administration centered and paid directly to the state. This is in accordance with those already applied in Indonesia where tax collection is done centrally. The tax system in Indonesia using self assessment system, which is the authority and responsibility given by the government to the taxpayer to calculate, pay and report the tax itself becomes the gap for taxpayers to commit fraud. Prerequisites that must be met for the success of this system is with the tax consciousness, tax honesty, tax mindedness, and tax discipline.

Keywords: Abu Yusuf, Indonesia, tax, tax administration

Procedia PDF Downloads 396
19893 Performance Assessment of Recycled Alum Sludge in the Treatment of Textile Industry Effluent in South Africa

Authors: Tony Ngoy Mbodi, Christophe Muanda

Abstract:

Textile industry is considered as one of the most polluting sectors in terms of effluent volume of discharge and wastewater composition, such as dye, which represents an environmental hazard when discharged without any proper treatment. A study was conducted to investigate the capability of the use of recycled alum sludge (RAS) as an alternative treatment for the reduction of colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH adjustment from dye based synthetic textile industry wastewater. The coagulation/flocculation process was studied for coagulants of Alum:RAS ratio of, 1:1, 2:1, 1:2 and 0:1. Experiments on treating the synthetic wastewater using membrane filtration and adsorption with corn cobs were also conducted. Results from the coagulation experiment were compared to those from adsorption with corn cobs and membrane filtration experiments conducted on the same synthetic wastewater. The results of the RAS experiments were also evaluated against standard guidelines for industrial effluents treated for discharge purposes in order to establish its level of compliance. Based on current results, it can be concluded that reusing the alum sludge as a low-cost material pretreatment method into the coagulation/flocculation process can offer some advantages such as high removal efficiency for disperse dye and economic savings on overall treatment of the industry wastewater.

Keywords: alum, coagulation/flocculation, dye, recycled alum sludge, textile wastewater

Procedia PDF Downloads 322
19892 Identification of Persistent Trace Organic Pollutants in Various Waste Water Samples Using HPLC

Authors: Almas Hamid, Ghazala Yaqub, Aqsa Riaz

Abstract:

Qualitative validation was performed to detect the presence of persistent organic pollutants (POPs) in various wastewater samples collected from domestic sources (Askari XI housing society, Bedian road Lahore) industrial sources (PET bottles, pharmaceutical, textile) and a municipal drain (Hudiara drain) in Lahore. In addition wastewater analysis of the selected parameter was carried out. pH for wastewater samples from Askari XI, PET bottles, pharmaceutical, textile and Hudiara drain were 6.9, 6.7, 6.27, 7.18 and 7.9 respectively, within the NEQS Pakistan range that is 6-9. TSS for the respective samples was 194, 241, 254, 140 and 251 mg/L, in effluent for pet bottle industry, pharmaceutical and Hudiara drain and exceeded the NEQS Pakistan. Chemical oxygen demand (COD) for the wastewater samples was 896 mg/L, 166 mg/L, 419 mg/L, 812 mg/L and 610 mg/L respectively, all in excess of NEQS (150 mg/L). Similarly the biological oxygen demand (BOD) values (110.8, 170, 423, 355 and 560 mg/L respectively) were also above NEQS limits (80 mg/L). Chloride (Cl-) content, total dissolved solids (TDS) and temperature were found out to be within the prescribed standard limits. The POPs selected for analysis included five pesticides/insecticides (D. D, Karate, Commando, Finis insect killer, Bifenthrin) and three polycyclic aromatic hydrocarbons (PAHs) (naphthalene, anthracene, phenanthrene). Peak values of standards were compared with that of wastewater samples. The results showed the presence of D.D in all wastewater samples, pesticide Karate was identified in Askari XI and textile industry sample. Pesticide Commando, Finis (insect killer) and Bifenthrin were detected in Askari XI and Hudiara drain wastewater samples. In case of PAHs; naphthalene was identified in all the five wastewater samples whereas anthracene and phenanthrene were detected in samples of Askari XI housing society, PET bottles industry, pharmaceutical industry and textile industry but totally absent in Hudiara drain wastewater. Practical recommendations have been put forth to avoid hazardous impacts of incurred samples.

Keywords: HPLC studies, lahore, physicochemical analysis, wastewater

Procedia PDF Downloads 242
19891 The Optimum Aeration Time of Wastewater Treatment by Surface Aerators in Suan Sunandha Rajabhat University

Authors: Anat Thanpinta

Abstract:

This research aimed to study on the efficiency of wastewater treatment by comparing the different aeration times of surface aerators in Suan Sunandha Rajabhat University. In doing so, the operation of surface aerators was divided into 2 groups which included the groups of 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day. As a result of the study, it was found that the efficiency of wastewater treatment in the forms of DO, BOD, turbidity and NO2- by 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day of surface aerators was not statistically different [Sig. = .644, .488, .716 and .054 > α (.05)] while the efficiency in the forms of NO3- and P was significantly different at the statistical level of .01 [Sig. = .001 and .000 < α (.01)].

Keywords: aeration time, surface aerator, wastewater treatment, efficiency

Procedia PDF Downloads 281
19890 Capability of Marine Macroalgae Chaetomorpha linum for Wastewater Phytoremediation and Biofuel Recovery

Authors: Zhipeng Chen, Lingfeng Wang, Shuang Qiu, Shijian Ge

Abstract:

Macroalgae are larger in size compared with microalgae; hence, they imposed lower separation and drying costs. To explore the potential for enhancing cultivation conditions in macroalgae Chaetomorpha linum (C. linum)-based bioreactor for nutrient recovery from municipal wastewaters and examine the biochemical composition of the macroalgae for the potential downstream production of biofuels, screening experiments were performed. This study suggested that C. linum grew well on primary (PW), secondary (SW), and centrate wastewater (CW). A step feeding approach was shown to significantly enhance biomass productivity when grown on 10% CW; meanwhile, nitrogen and phosphorus removal efficiencies increased to 86.8 ± 1.1% and 92.6 ± 0.2%, respectively. The CO₂-supplemented SW cultures were 1.20 times more productive than the corresponding controls without CO₂ supplementation. These findings demonstrate that C. linum could represent a promising and efficient wastewater treatment alternative which could also provide a feedstock for downstream processing to biofuels.

Keywords: biofuel production, macroalgae, nutrient removal, wastewater

Procedia PDF Downloads 139
19889 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems

Authors: M. Beheshti, S. Saegrov, T. M. Muthanna

Abstract:

Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.

Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management

Procedia PDF Downloads 296
19888 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 28
19887 Sustainability Assessment of Municipal Wastewater Treatment

Authors: Yousra Zakaria Ahmed, Ahmed El Gendy, Salah El Haggar

Abstract:

In this paper, our methodology to assess sustainability of wastewater treatment technologies in Egypt is presented. The preliminary list of factors to be considered, as well as their ranking listed. The factors include, but are not limited to pollutants removal efficiency and energy consumption under the environmental dimension, construction cost, operation and maintenance costs and required land area cost under the economic dimension and public acceptance, noise and generating job opportunities for local residents. This methodology is intended to be a user-friendly screening tool to support the decision making process when investigating different wastewater treatment technologies in Egypt. Based on the research work results presented in this paper, it can be generally concluded that the categorization of some of the social and environmental aspects of sustainability is subjective and highly dependent on the local conditions and researchers’ background.

Keywords: sustainability, wastewater treatment, sustainability assessment, Egypt

Procedia PDF Downloads 471
19886 Determination of the Oxidative Potential of Organic Materials: Method Development

Authors: Jui Afrin, Akhtarul Islam

Abstract:

In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required.

Keywords: bod (biological oxygen demand), cod (chemical oxygen demand), oxidative potential, titration, waste water, development

Procedia PDF Downloads 206
19885 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 104
19884 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 420
19883 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan

Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte

Abstract:

The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.

Keywords: nanoparticles, whiskers, chitosan, chromium

Procedia PDF Downloads 112
19882 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'

Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.

Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics

Procedia PDF Downloads 288
19881 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 56
19880 Wastewater Treatment Using Sodom Apple Tree in Arid Regions

Authors: D. Oulhaci, M. Zehah, S. Meguellati

Abstract:

Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollution

Keywords: arid zone, pollution, purification, re-use, wastewater.

Procedia PDF Downloads 53
19879 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance

Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee

Abstract:

Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.

Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance

Procedia PDF Downloads 61
19878 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia

Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad

Abstract:

A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.

Keywords: ACTIFLO ® clarifier, mining wastewater, reverse osmosis, water treatment

Procedia PDF Downloads 177
19877 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process

Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi

Abstract:

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process

Procedia PDF Downloads 325
19876 How to Capitalize on BioCNG at a Wastewater Plant

Authors: William G. "Gus" Simmons

Abstract:

Municipal and industrial wastewater plants across our country utilize anaerobic digestion as either primary treatment or as a means of waste sludge treatment and reduction. The emphasis on renewable energy and clean energy over the past several years, coupled with increasing electricity costs and increasing consumer demands for efficient utility operations has led to closer examination of the potential for harvesting the energy value of the biogas produced by anaerobic digestion. Although some facilities may have already come to the belief that harvesting this energy value is not practical or a top priority as compared to other capital needs and initiatives at the wastewater plant, we see that many are seeing biogas, and an opportunity for additional revenues, go up in flames as they continue to flare. Conversely, few wastewater plants under progressive and visionary leadership have demonstrated that harvesting the energy value from anaerobic digestion is more than “smoke and hot air”. From providing thermal energy to adjacent or on-campus operations to generating electricity and/or transportation fuels, these facilities are proving that energy harvesting can not only be profitable, but sustainable. This paper explores ways in which wastewater treatment plants can increase their value and import to the communities they serve through the generation of clean, renewable energy; also presented the processes in which these facilities moved from energy and cost sinks to sparks of innovation and pride in the communities in which they operate.

Keywords: anaerobic digestion, harvesting energy, biogas, renewable energy, sustainability

Procedia PDF Downloads 289
19875 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development

Authors: Komal Verma, V. S. Moholkar

Abstract:

This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity

Procedia PDF Downloads 90
19874 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 93
19873 Water Reclamation from Synthetic Winery Wastewater Using a Fertiliser Drawn Forward Osmosis System Evaluating Aquaporin-Based Biomimetic and Cellulose Triacetate Forward Osmosis Membranes

Authors: Robyn Augustine, Irena Petrinic, Claus Helix-Nielsen, Marshall S. Sheldon

Abstract:

This study examined the performance of two commercial forward osmosis (FO) membranes; an aquaporin (AQP) based biomimetic membrane, and cellulose triacetate (CTA) membrane in a fertiliser is drawn forward osmosis (FDFO) system for the reclamation of water from synthetic winery wastewater (SWW) operated over 24 hr. Straight, 1 M KCl and 1 M NH₄NO₃ fertiliser solutions were evaluated as draw solutions in the FDFO system. The performance of the AQP-based biomimetic and CTA FO membranes were evaluated in terms of permeate water flux (Jw), reverse solute flux (Js) and percentage water recovery (Re). The average water flux and reverse solute flux when using 1 M KCl as a draw solution against controlled feed solution, deionised (DI) water, was 11.65 L/m²h and 3.98 g/m²h (AQP) and 6.24 L/m²h and 2.89 g/m²h (CTA), respectively. Using 1 M NH₄NO₃ as a draw solution yielded average water fluxes and reverse solute fluxes of 10.73 L/m²h and 1.31 g/m²h (AQP) and 5.84 L/m²h and 1.39 g/m²h (CTA), respectively. When using SWW as the feed solution and 1 M KCl and 1 M NH₄NO₃ as draw solutions, respectively, the average water fluxes observed were 8.15 and 9.66 L/m²h (AQP) and 5.02 and 5.65 L/m²h (CTA). Membrane water flux decline was the result of a combined decrease in the effective driving force of the FDFO system, reverse solute flux and organic fouling. Permeate water flux recoveries of between 84-98%, and 83-89% were observed for the AQP-based biomimetic and CTA membrane, respectively after physical cleaning by flushing was employed. The highest water recovery rate of 49% was observed for the 1 M KCl fertiliser draw solution with AQP-based biomimetic membrane and proved superior in the reclamation of water from SWW.

Keywords: aquaporin biomimetic membrane, cellulose triacetate membrane, forward osmosis, reverse solute flux, synthetic winery wastewater and water flux

Procedia PDF Downloads 143
19872 The Clarification of Palm Oil Wastewater Treatment by Coagulant Composite from Palm Oil Ash

Authors: Rewadee Anuwattana, Narumol Soparatana, Pattamaphorn Phuangngamphan, Worapong Pattayawan, Atiporn Jinprayoon, Saroj Klangkongsap, Supinya Sutthima

Abstract:

In this work focus on clarification in palm oil wastewater treatment by using coagulant composite from palm oil ash. The design of this study was carried out by two steps; first, synthesis of new coagulant composite from palm oil ash which was fused by using Al source combined with Fe source and form to the crystal by the hydrothermal crystallization process. The characterization of coagulant composite from palm oil ash was analyzed by advanced instruments, and The pattern was analyzed by X-ray Diffraction (XRD), chemical composition by X-Ray Fluorescence (XRFS) and morphology characterized by SEM. The second step, the clarification wastewater treatment efficiency of synthetic coagulant composite, was evaluated by coagulation/flocculation process based on the COD, turbidity, phosphate and color removal of wastewater from palm oil factory by varying the coagulant dosage (1-8 %w/v) with no adjusted pH and commercial coagulants (Alum, Ferric Chloride and poly aluminum chloride) which adjusted the pH (6). The results found that the maximum removal of 6% w/v of synthetic coagulant from palm oil ash can remove COD, turbidity, phosphate and color was 88.44%, 93.32%, 93.32% and 93.32%, respectively. The experiments were compared using 6% w/v of commercial coagulants (Alum, Ferric Chloride and Polyaluminum Chloride) can remove COD of 74.29%, 71.43% and 57.14%, respectively.

Keywords: coagulation, coagulant, wastewater treatment, waste utilization, palm oil ash

Procedia PDF Downloads 160
19871 Object-Oriented Modeling Simulation and Control of Activated Sludge Process

Authors: J. Fernandez de Canete, P. Del Saz Orozco, I. Garcia-Moral, A. Akhrymenka

Abstract:

Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.

Keywords: object-oriented programming, activated sludge process, OpenModelica, feedback control

Procedia PDF Downloads 361
19870 Freshwater Recovering and Water Pollution Controlling Technology

Authors: Habtamu Abdisa

Abstract:

In nature, water may not be free from contaminants due to its polar nature. But, more than this, the environmental water is highly polluted by manmade activities from industrial, agricultural, recreation, shipping, and domestic sites, thereby increasing the shortage of freshwater for designated purposes. Therefore, in the face of water scarcity, human beings are enforced to look at all the existing opportunities to get an adequate amount of freshwater resources. The most probable water resource is wastewater, from which the water can be recovered to serve designated purposes (for industrial, agricultural, drinking, and other domestic uses). Present-day, the most preferable method for recovering water from different wastewater streams for re-use is membrane technology. This paper looks at the progressive development of membrane technology in wastewater treatment. The applications of pressure-driven membrane separation technology (microfiltration, ultrafiltration, nano-filtration, reverse osmosis, and tissue purification) and no pressure membrane separation technology (semipermeable membrane, liquefiedfilm, and electro-dialysis) and also ion-exchange were reviewed. More than all, the technology for converting environmental water pollutants into energy is of considerable attention. Finally, recommendations for future research relating to the application of membrane technology in wastewater treatment were made. Also, further research recommendation about membrane fouling and cleaning was made.

Keywords: environmental pollution, membrane technology, water quality, wastewater

Procedia PDF Downloads 68
19869 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 390
19868 Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling

Authors: Thandeka Y. S. Jwara, Paul Musonge

Abstract:

Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study.

Keywords: chemical oxygen demand, COD fractionation, wastewater modelling, wastewater optimization

Procedia PDF Downloads 122
19867 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production

Authors: Ismail S. Bostanci, Ebru Akkaya

Abstract:

Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.

Keywords: contamination control, microalgae culture contamination, pond crash, predator control

Procedia PDF Downloads 179