Search results for: temporal splitting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1300

Search results for: temporal splitting

1120 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 371
1119 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception

Procedia PDF Downloads 422
1118 Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock

Authors: Hyeonseok Yoo, Kiseok Oh, Jinsub Choi

Abstract:

Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer.

Keywords: doping, potential shock, single step anodization, titanium oxide nanotubes

Procedia PDF Downloads 458
1117 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 154
1116 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data

Authors: Salam Khalifa, Naveed Ahmed

Abstract:

We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.

Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation

Procedia PDF Downloads 373
1115 Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference

Authors: Nasser S. Shebka

Abstract:

Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective.

Keywords: fuzzy rule-based systems, fuzzy tense inference, intelligent systems, temporal modalities

Procedia PDF Downloads 92
1114 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading

Procedia PDF Downloads 144
1113 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 221
1112 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis

Authors: Deng Zengming, Wang Mingjiang

Abstract:

As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.

Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis

Procedia PDF Downloads 250
1111 Hope in the Ruins of 'Ozymandias': Reimagining Temporal Horizons in Felicia Hemans 'the Image in Lava'

Authors: Lauren Schuldt Wilson

Abstract:

Felicia Hemans’ memorializing of the unwritten lives of women and the consequent allowance for marginalized voices to remember and be remembered has been considered by many critics in terms of ekphrasis and elegy, terms which privilege the question of whether Hemans’ poeticizing can represent lost voices of history or only her poetic expression. Amy Gates, Brian Elliott, and others point out Hemans’ acknowledgement of the self-projection necessary for imaginatively filling the absences of unrecorded histories. Yet, few have examined the complex temporal positioning Hemans inscribes in these moments of self-projection and imaginative historicizing. In poems like ‘The Image in Lava,’ Hemans maps not only a lost past, but also a lost potential future onto the image of a dead infant in its mother’s arms, the discovery and consideration of which moves the imagined viewer to recover and incorporate the ‘hope’ encapsulated in the figure of the infant into a reevaluation of national time embodied by the ‘relics / Left by the pomps of old.’ By examining Hemans’ acknowledgement and response to Percy Bysshe Shelley’s ‘Ozymandias,’ this essay explores how Hemans’ depictions of imaginative historicizing open new horizons of possibility and reevaluate temporal value structures by imagining previously undiscovered or unexplored potentialities of the past. Where Shelley’s poem mocks the futility of national power and time, this essay outlines Hemans’ suggestion of alternative threads of identity and temporal meaning-making which, regardless of historical veracity, exist outside of and against the structures Shelley challenges. Counter to previous readings of Hemans’ poem as celebration of either recovered or poetically constructed maternal love, this essay argues that Hemans offers a meditation on sites of reproduction—both of personal reproductive futurity and of national reproduction of power. This meditation culminates in Hemans’ gesturing towards a method of historicism by which the imagined viewer reinvigorates the sterile, ‘shattered visage’ of national time by forming temporal identity through the imagining of trans-historical hope inscribed on the infant body of the universal, individual subject rather than the broken monument of the king.

Keywords: futurity, national temporalities, reproduction, revisionary histories

Procedia PDF Downloads 166
1110 Comparative Study of Amyloidogenic Potential of AgNO3 and Freund's Adjuvant (AF) with That of Vitamin Free Casein, on Spatio-Temporal Pattern of Experimental Amyloidosis in Mice

Authors: Alireza Javed, Keivan Jamshidi

Abstract:

Reactive amyloidosis is a condition that complicates a long list of chronic inflammation, chronic infectious, malignant, and hereditary disorders. In the present study the potential effects of two amyloidogenic substances: ie. AgNO3 and Freund's Adjuvant (AF) with that of vitamin free casein, on spatio-temporal pattern of experimental amyloidosis in mice, were compared. For this purpose, a total of 40 male Swees mice, obtained from Pasteur Institute Tehran, after being weighted were randomly divided into 4 groups including 2 treatments, 1 control (vitamin free casein) and 1 positive control (normal saline). At the end of 3rd, 5th and 7th weeks of experiment 3 mice were randomly selected and euthnised. Spleen sample of each animal obtained and preserved in 10% neutral buffer formalin. Sample were then processed through different stages of dehydration, clearing and impregnation and finally embedded in paraffin blocks. Sections of 5µm thickness then cut and stained by alkaline Congo red techniques. Spleen weights and the data obtained from the microscopic quantitative analysis did show no significant differences between groups A and B, A and C, and B and C. However, significant differences were observed between groups A and D, B and D, and C and D respectively. It is concluded that two compounds ie; AgNO3 and Freund's Adjuvant have the same potential, as does vitamin free casein have, in spatio – temporal pattern of experimental amyloidosis in mice.

Keywords: amyloidosis, mice, AgNO3, Freund's Adjuvant

Procedia PDF Downloads 370
1109 Analyzing the Evolution of Adverse Events in Pharmacovigilance: A Data-Driven Approach

Authors: Kwaku Damoah

Abstract:

This study presents a comprehensive data-driven analysis to understand the evolution of adverse events (AEs) in pharmacovigilance. Utilizing data from the FDA Adverse Event Reporting System (FAERS), we employed three analytical methods: rank-based, frequency-based, and percentage change analyses. These methods assessed temporal trends and patterns in AE reporting, focusing on various drug-active ingredients and patient demographics. Our findings reveal significant trends in AE occurrences, with both increasing and decreasing patterns from 2000 to 2023. This research highlights the importance of continuous monitoring and advanced analysis in pharmacovigilance, offering valuable insights for healthcare professionals and policymakers to enhance drug safety.

Keywords: event analysis, FDA adverse event reporting system, pharmacovigilance, temporal trend analysis

Procedia PDF Downloads 48
1108 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index

Authors: Lopita Pal, Suresh V. Madha

Abstract:

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.

Keywords: spatio-temporal change, NDWI, urbanization, wetland

Procedia PDF Downloads 283
1107 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: ICA, RSN, refractory epilepsy, rsfMRI

Procedia PDF Downloads 76
1106 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka

Procedia PDF Downloads 476
1105 Coastalization and Urban Sprawl in the Mediterranean: Using High-Resolution Multi-Temporal Data to Identify Typologies of Spatial Development

Authors: Apostolos Lagarias, Anastasia Stratigea

Abstract:

Coastal urbanization is heavily affecting the Mediterranean, taking the form of linear urban sprawl along the coastal zone. This process is posing extreme pressure on ecosystems, leading to an unsustainable model of growth. The aim of this research is to analyze coastal urbanization patterns in the Mediterranean using High-resolution multi-temporal data provided by the Global Human Settlement Layer (GHSL) database. Methodology involves the estimation of a set of spatial metrics characterizing the density, aggregation/clustering and dispersion of built-up areas. As case study areas, the Spanish Coast and the Adriatic Italian Coast are examined. Coastalization profiles are examined and selected sub-areas massively affected by tourism development and suburbanization trends (Costa Blanca/Murcia, Costa del Sol, Puglia, Emilia-Romagna Coast) are analyzed and compared. Results show that there are considerable differences between the Spanish and the Italian typologies of spatial development, related to the land use structure and planning policies applied in each case. Monitoring and analyzing spatial patterns could inform integrated Mediterranean strategies for coastal areas and redirect spatial/environmental policies towards a more sustainable model of growth

Keywords: coastalization, Mediterranean, multi-temporal, urban sprawl, spatial metrics

Procedia PDF Downloads 138
1104 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices

Authors: Mirvat Shamseddine, Issam Lakkis

Abstract:

We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.

Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows

Procedia PDF Downloads 299
1103 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas

Abstract:

This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.

Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin

Procedia PDF Downloads 16
1102 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis

Authors: Mahdi Bazarganigilani

Abstract:

Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.

Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning

Procedia PDF Downloads 211
1101 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources

Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu

Abstract:

A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.

Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast

Procedia PDF Downloads 163
1100 The Acquisition of Temporality in Italian Child Language: Case Study of Child Frog Story Narratives

Authors: Gabriella Notarianni Burk

Abstract:

The present study investigates the Aspect Hypothesis (AH) in Italian child language in the production of frog story narratives from the CHILDES database. The AH is based on the assumption that children initially encode aspectual and lexical distinctions rather than temporal relations. Children from a variety of first languages have been shown to mark past initially with achievements and accomplishments (telic predicates) and in later stages with states and activities (atelic predicates). Aspectual distinctions in Romance languages are obligatorily and overtly encoded in the inflectional morphology. In Italian the perfective viewpoint is realized by the passato prossimo, which expresses a temporal and aspectual meaning of pastness and perfectivity, whereas the imperfective viewpoint in the past tense is realized by the imperfetto. The aim of this study is to assess the role of lexical aspect in the acquisition of tense and aspect morphology and to understand if Italian children’s mapping of aspectual and temporal distinctions follows consistent developmental patterns across languages. The research methodology aligns with the cross-linguistic designs, tasks and coding procedures previously developed in the frog story literature. Results from two-factor ANOVA show that Italian children (age range: 4-6) exhibited a statistically significant distinction between foregrounded perfective and backgrounded imperfective marking. However, a closer examination of the sixty narratives reveals an idiosyncratic production pattern for Italian children, whereby the marking of imperfetto deviates from the tenets of AH and emerges as deictic tense to entail completed and bounded events in foreground clauses. Instances of ‘perfective’ uses of imperfetto were predominantly found in the four-year old narratives (25%). Furthermore, the analysis of the perfective marking suggests that morphological articulation and diatopic variation may influence the child production of formal linguistic devices in discourse.

Keywords: actionality, aspect, grounding, temporal reference

Procedia PDF Downloads 241
1099 Sympatric Calanus Species: A High Temporal Resolution of Reproductive Timing and Stage Composition

Authors: Mads Schultz, Galice Hoarau, Marvin Choquet

Abstract:

Members of the genus Calanus are key species in the North Atlantic and Arctic marine ecosystems due to their vast abundance and their ability to accumulate high amounts of lipid. As a link between primary producers and higher trophic levels, the temporal presence of each Calanus species is important in a time of changing communities and northward distribution shifts. This study focused on the temporal niches of the sympatric species Calanus helgolandicus, Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus in Skjerstad fjord, a Norwegian fjord (67˚14’N, 14 ˚44’E). Three depth intervals were sampled monthly over a year, targeting copepodite stages of the genus Calanus. Species determination was carried out genetically using insertion/deletion markers. In addition, during the reproductive season (Jan-May), weekly samples of the upper 50 meters of the water column targeting nauplii and 5 depth intervals targeting copepodites were collected. Nauplii samples were sorted into two groups (NI-NIII and NIV-NVI), and species were genetically identified. Specimens from stage CIV to adults from each depth interval of copepodite sampling were photographed in order to generate a supporting timeline of visual traits, including gonad maturation stage, presence of stomach content, and total lipid content. The most abundant species were Calanus finmarchicus and Calanus glacialis, followed by Calanus hyperboreus. These species were present in the water column throughout the year, whereas Calanus helgolandicus, the least abundant species, was only present during the summer and autumn period. Each species showed distinct temporal niches, with Calanus finmarchicus occupying the upper 50 meters longer than any of the other species. Calanus hyperboreus dominates in abundance early in the spring but are outnumbered by Calanus glacialis and Calanus finmarchicus after spring bloom sets in. In Skjerstad fjord, Calanus hyperboreus is a clear capital breeder with a long period of nauplii presence before the spring bloom. Calanus glacialis and Calanus finmarchicus both utilize income breeding, with Calanus glacialis developing to the larger nauplii stages quicker than Calanus finmarchicus, but also having a shorter reproduction period. Indeed, the “traditional Arctic” species Calanus hyperboreus and Calanus glacialis appear to end their reproduction period earlier than the North Atlantic Calanus finmarchicus.

Keywords: calanus, depth distribution, reproduction, stage composition, temporal niches

Procedia PDF Downloads 150
1098 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds

Authors: Zeina Merabi, Arij Dao

Abstract:

The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.

Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration

Procedia PDF Downloads 65
1097 The Development of Psychosis in Offenders and Its Relationship to Crime

Authors: Belinda Crissman

Abstract:

Serious mental disorder is greatly overrepresented in prisoners compared to the general community, with consequences for prison management, recidivism and the prisoners themselves. Incarcerated individuals with psychotic disorders experience insufficient detection and treatment and higher rates of suicide in custody. However direct evidence to explain the overrepresentation of individuals with psychosis in prisons is sparse. The current study aimed to use a life course criminology perspective to answer two key questions: 1) What is the temporal relationship between psychosis and offending (does first mental health contact precede first recorded offence, or does the offending precede the mental health diagnosis)? 2) Are there key temporal points or system contacts prior to incarceration that could be identified as opportunities for early intervention? Data from the innovative Queensland Linkage project was used to link individuals with their corrections, health and relevant social service systems to answer these questions.

Keywords: mental disorder, crime, life course criminology, prevention

Procedia PDF Downloads 129
1096 Extending Image Captioning to Video Captioning Using Encoder-Decoder

Authors: Sikiru Ademola Adewale, Joe Thomas, Bolanle Hafiz Matti, Tosin Ige

Abstract:

This project demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over the video temporal dimension. Predicted captions were shown to generalize over video action, even in instances where the video scene changed dramatically. Model architecture changes are discussed to improve sentence grammar and correctness.

Keywords: decoder, encoder, many-to-many mapping, video captioning, 2-gram BLEU

Procedia PDF Downloads 108
1095 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas

Abstract:

This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.

Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin

Procedia PDF Downloads 25
1094 Spatio-Temporal Properties of p53 States Raised by Glucose

Authors: Md. Jahoor Alam

Abstract:

Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles.

Keywords: oscillation, temporal behavior, p53, glucose

Procedia PDF Downloads 304
1093 InSAR Times-Series Phase Unwrapping for Urban Areas

Authors: Hui Luo, Zhenhong Li, Zhen Dong

Abstract:

The analysis of multi-temporal InSAR (MTInSAR) such as persistent scatterer (PS) and small baseline subset (SBAS) techniques usually relies on temporal/spatial phase unwrapping (PU). Unfortunately, it always fails to unwrap the phase for two reasons: 1) spatial phase jump between adjacent pixels larger than π, such as layover and high discontinuous terrain; 2) temporal phase discontinuities such as time varied atmospheric delay. To overcome these limitations, a least-square based PU method is introduced in this paper, which incorporates baseline-combination interferograms and adjacent phase gradient network. Firstly, permanent scatterers (PS) are selected for study. Starting with the linear baseline-combination method, we obtain equivalent 'small baseline inteferograms' to limit the spatial phase difference. Then, phase different has been conducted between connected PSs (connected by a specific networking rule) to suppress the spatial correlated phase errors such as atmospheric artifact. After that, interval phase difference along arcs can be computed by least square method and followed by an outlier detector to remove the arcs with phase ambiguities. Then, the unwrapped phase can be obtained by spatial integration. The proposed method is tested on real data of TerraSAR-X, and the results are also compared with the ones obtained by StaMPS(a software package with 3D PU capabilities). By comparison, it shows that the proposed method can successfully unwrap the interferograms in urban areas even when high discontinuities exist, while StaMPS fails. At last, precise DEM errors can be got according to the unwrapped interferograms.

Keywords: phase unwrapping, time series, InSAR, urban areas

Procedia PDF Downloads 151
1092 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 18
1091 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153