Search results for: sustainable building design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18786

Search results for: sustainable building design

18606 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 260
18605 Sustainable Urban Waterfronts Using Sustainability Assessment Rating System

Authors: R. M. R. Hussein

Abstract:

Sustainable urban waterfront development is one of the most interesting phenomena of urban renewal in the last decades. However, there are still many cities whose visual image is compromised due to the lack of a sustainable urban waterfront development, which consequently affects the place of those cities globally. This paper aims to reimagine the role of waterfront areas in city design, with a particular focus on Egypt, so that they provide attractive, sustainable urban environments while promoting the continued aesthetic development of the city overall. This aim will be achieved by determining the main principles of a sustainable urban waterfront and its applications. This paper concentrates on sustainability assessment rating systems. A number of international case-studies, wherein a city has applied the basic principles for a sustainable urban waterfront and have made use of sustainability assessment rating systems, have been selected as examples which can be applied to the urban waterfronts in Egypt. This paper establishes the importance of developing the design of urban environments in Egypt, as well as identifying the methods of sustainability application for urban waterfronts.

Keywords: sustainable urban waterfront, green infrastructure, energy efficient, Cairo

Procedia PDF Downloads 476
18604 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 89
18603 Health Post A Sustainable Prototype for the Third World

Authors: Chizzoniti Domenico, Beggiora Klizia, Cattani Letizia, Moscatelli Monica

Abstract:

This paper concerns the study of sustainable construction materials applied on the "Health Post", a prototype for the primary health care situated in alienated areas of the world. It's suitable for social and climatic Sub-Saharan context; however, it could be moved in other countries of the world with similar urgent needs. The idea is to create a Health Post with local construction materials that have a low environmental impact and promote the local workforce allowing reuse of traditional building techniques lowering production costs and transport. The aim of Primary Health Care Centre is to be a flexible and expandable structure identifying a modular form that can be repeated several times to expand its existing functions. In this way it could be not only a health care centre but also a socio-cultural facility.

Keywords: low costs building, sustainable construction materials, green construction system, prototype, health care, emergency

Procedia PDF Downloads 487
18602 Earthquake Resistant Sustainable Steel Green Building

Authors: Arup Saha Chaudhuri

Abstract:

Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.

Keywords: steel building, green and sustainable, earthquake resistant, EBF system

Procedia PDF Downloads 352
18601 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model

Authors: Yaseri Dahlia Apritasari

Abstract:

Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.

Keywords: aluminium material, Facade, second skin, visual comfort

Procedia PDF Downloads 356
18600 Modern Forms and Aesthetics in Design

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

The term ‘’FORM’’ in design could be referred to as the combination of various shapes of different sizes and assembling them in appropriate positions to achieve a unique figure of high aesthetic value. A deduction from this definition is that forms contribute immensely to the actualization of aesthetics in a building. When these various shapes and figures are properly assembled, it may give rise to a concept in design. However some architects and other designers either misuse or abuse the use of these shapes, hence resulting to a design imbalance, lack of uniformity and expression. This academic work is designed to educate the public on the proper usage of some regular shapes like circles, rectangles, pentagons, hexagons, triangles etc, to achieve a unique form in design. By the end of this work, one should be able to assemble different shapes to express different emotions of the mind, such as peace, love, confusion, war, and unity. Some elements of design, such as balance, stability, functionality and aesthetics, will also be achieved even as the building maintains its unique form.

Keywords: aesthetics, form, balance, stability

Procedia PDF Downloads 92
18599 A Designing 3D Model: Castle of the Mall-Dern

Authors: Nanadcha Sinjindawong

Abstract:

This article discusses the design process of a community mall called Castle of The Mall-dern. The concept behind this mall is to combine elements of a medieval castle with modern architecture. The author aims to create a building that fits into the surroundings while also providing users with the vibes of the ancient era. The total area used for the mall is 4,000 square meters, with three floors. The first floor is 1,500 square meters, the second floor is 1,750 square meters, and the third floor is 750 square meters. Research Aim: The aim of this research is to design a community mall that sells ancient clothes and accessories, and to combine sustainable architectural design with the ideas of ancient architecture in an urban area with convenient transportation. Methodology: The research utilizes qualitative research methods in architectural design. The process begins with calculating the given area and dividing it into different zones. The author then sketches and draws the plan of each floor, adding the necessary rooms based on the floor areas mentioned earlier. The program "SketchUp" is used to create an online 3D model of the community mall, and a physical model is built for presentation purposes on A1 paper, explaining all the details. Findings: The result of this research is a community mall with various amenities. The first floor includes retail shops, clothing stores, a food center, and a service zone. Additionally, there is an indoor garden with a fountain and a tree for relaxation. The second and third floors feature a void in the middle, with a few stores, cafes, restaurants, and studios on the second floor. The third floor is home to the administration and security control room, as well as a community gathering area designed as a public library with a café inside. Theoretical Importance: This research contributes to the field of sustainable architectural design by combining ancient architectural ideas with modern elements. It showcases the potential for creating buildings that blend historical aesthetics with contemporary functionality. Data Collection and Analysis Procedures: The data for this research is collected through a combination of area calculation, sketching, and building a 3D model. The analysis involves evaluating the design based on the allocated area, zoning, and functional requirements for a community mall. Question Addressed: The research addresses the question of how to design a community mall with a theme of ancient Medieval and Victorian eras. It explores how to combine sustainable architectural design principles with historical aesthetics to create a functional and visually appealing space. Conclusion: In conclusion, this research successfully designs a community mall called “Castle of The Mall-dern” that incorporates elements of Medieval and Victorian architecture. The building encompasses various zones, including retail shops, restaurants, community gathering areas, and service zones. It also features an interior garden and a public library within the mall. The research contributes to the field of sustainable architectural design by showcasing the potential for combining ancient architectural ideas with modern elements in an urban setting.

Keywords: 3D model, community mall, modern architecture, medieval architecture

Procedia PDF Downloads 113
18598 Investigating the Role of Supplier Involvement in the Design Process as an Approach for Enhancing Building Maintainability

Authors: Kamal Ahmed, Othman Ayman, Refat Mostafa

Abstract:

The post-construction phase represents a critical milestone in the project lifecycle. This is because design errors and omissions, as well as construction defects, are examined during this phase. The traditional procurement approaches that are commonly adopted in construction projects separate design from construction, which ultimately inhibits contractors, suppliers and other parties from providing the design team with constructive comments and feedback to improve the project design. As a result, a lack of considering maintainability aspects during the design process results in increasing maintenance and operation costs as well as reducing building performance. This research aims to investigate the role of Early Supplier Involvement (ESI) in the design process as an approach to enhancing building maintainability. In order to achieve this aim, a research methodology consisting of a literature review, case studies and a survey questionnaire was designed to accomplish four objectives. Firstly, a literature review was used to examine the concepts of building maintenance, maintainability, the design process and ESI. Secondly, three case studies were presented and analyzed to investigate the role of ESI in enhancing building maintainability during the design process. Thirdly, a survey questionnaire was conducted with a representative sample of Architectural Design Firms (ADFs) in Egypt to investigate their perception and application of ESI towards enhancing building maintainability during the design process. Finally, the research developed a framework to facilitate ESI in the design process in ADFs in Egypt. Data analysis showed that the ‘Difficulty of trusting external parties and sharing information with transparency’ was ranked the highest challenge of ESI in ADFs in Egypt, followed by ‘Legal competitive advantage restrictions’. Moreover, ‘Better estimation for operation and maintenance costs’ was ranked the highest contribution of ESI towards enhancing building maintainability, followed by ‘Reduce the number of operation and maintenance problems or reworks’. Finally, ‘Innovation, technical expertise, and competence’ was ranked the highest supplier’s selection criteria, while ‘paying consultation fees for offering advice and recommendations to the design team’ was ranked the highest form of supplier’s remuneration. The proposed framework represents a synthesis that is creative in thought and adds value to the knowledge in a manner that has not previously occurred.

Keywords: maintenance, building maintainability, building life cycle cost (ICC), material supplier

Procedia PDF Downloads 54
18597 A Case Study on Post-Occupancy Evaluation of User Satisfaction in Higher Educational Buildings

Authors: Yuanhong Zhao, Qingping Yang, Andrew Fox, Tao Zhang

Abstract:

Post-occupancy evaluation (POE) is a systematic approach to assess the actual building performance after the building has been occupied for some time. In this paper, a structured POE assessment was conducted using the building use survey (BUS) methodology in two higher educational buildings in the United Kingdom. This study aims to help close the building performance gap, provide optimized building operation suggestions, and to improve occupants’ satisfaction level. In this research, the questionnaire survey investigated the influences of environmental factors on user satisfaction from the main aspects of building overall design, thermal comfort, perceived control, indoor environment quality for noise, lighting, ventilation, and other non-environmental factors, such as the background information about age, sex, time in buildings, workgroup size, and so on. The results indicate that the occupant satisfaction level with the main aspects of building overall design, indoor environment quality, and thermal comfort in summer and winter on both two buildings, which is lower than the benchmark data. The feedback of this POE assessment has been reported to the building management team to allow managers to develop high-performance building operation plans. Finally, this research provided improvement suggestions to the building operation system to narrow down the performance gap and improve the user work experience satisfaction and productivity level.

Keywords: building performance assessment systems, higher educational buildings, post-occupancy evaluation, user satisfaction

Procedia PDF Downloads 157
18596 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building

Authors: Zehra Aybike Kılıç, Alpin Köknel Yener

Abstract:

Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.

Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort

Procedia PDF Downloads 181
18595 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall.  In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall.  This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 260
18594 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.

Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process

Procedia PDF Downloads 680
18593 Improvement of Ventilation and Thermal Comfort Using the Atrium Design for Traditional Folk Houses-Fujian Earthen Building

Authors: Ying-Ming Su

Abstract:

Fujian earthen building which was known as a classic for ecological buildings was listed on the world heritage in 2008 (UNESCO) in China. Its design strategy can be applied to modern architecture planning and design. This study chose two different cases (Round Atrium: Er-Yi Building, Double Round Atrium: Zhen-Chen Building) of earthen building in Fu-Jian to compare the ventilation effects of different atrium forms. We adopt field measurements and computational fluid dynamics (CFD) simulation of temperature, humidity, and wind environment to identify the relationship between external environment and atrium about comfort and to confirm the relationship about atrium H/W (height/width). Results indicate that, through the atrium convection effect, it makes the natural wind guides to each space surrounded and keeps indoor comfort. It illustrates that the smaller the ratio of the H/W which is the relationship between the height and the width of an atrium is, the greater the wind speed generated within the street valley. Moreover, the wind speed is very close to the reference wind speed. This field measurement verifies that the value of H/W has great influence of solar radiation heat and sunshine shadows. The ventilation efficiency is: Er-Yi Building (H/W =0.2778) > Zhen-Chen Building (H/W=0.3670). Comparing the cases with the same shape but with different H/W, through the different size patios, airflow revolves in the atriums and can be brought into each interior space. The atrium settings meet the need of building ventilation, and can adjust the humidity and temperature within the buildings. It also creates good ventilation effect.

Keywords: traditional folk houses, atrium, tulou, ventilation, building microclimate

Procedia PDF Downloads 477
18592 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: embodied carbon footprint, Malaysian green homes

Procedia PDF Downloads 347
18591 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 72
18590 An Experimental Study of the External Thermal Insulation System’s (ETICS) Efficiency in Buildings during Spring Conditions

Authors: Carmen Viñas Arrebola, Antonio Rodriguez Sanchez, Sheila Varela Lujan, Mariano Gonzalez Cortina, Cesar Porras Amores

Abstract:

The research group TEMA from the School of Building (UPM) is working in the line of energy efficiency and comfort in building. The need to reduce energy consumption in the building construction implies designing new constructive systems. These systems help to reduce both consumption and energy losses in order to achieve adequate thermal comfort for people in any type of building. In existing buildings the best option is the rehabilitation focused on thermal insulation. The aim of this paper is to design, monitor and analyze the first results of thermal behavior of the ETICS system in façades. This retrofitting solution consists of adding thermal insulation on the outside of the building, helping to create a continuous envelope on the façades. The analysis is done by comparing a rehabilitated part of the building with ETICS system and another part which has not been rehabilitated, and it is taken as reference. Both of them have the same characteristics. Temperature measurements were taken with type K thermocouples according to the previous design of the monitoring and in the same period of time. The pilot building of the study is situated in Benimamet Street, in San Cristobal de Los Ángeles, in the south of Madrid. It was built in the late 50s. The 51st entrance hall, which is restored, and the 47th entrance hall, in original conditions, have been studied.

Keywords: comfort in building, energy efficiency in building, ETICS, thermal properties

Procedia PDF Downloads 321
18589 Rethinking Sustainability: Towards an Open System Approach

Authors: Fatemeh Yazdandoust

Abstract:

Sustainability is a growing concern in architecture and urban planning due to the environmental impact of the built environment. Ecological challenges persist despite the proliferation of sustainable design strategies, prompting a critical reevaluation of existing approaches. This study examines sustainable design practices, focusing on the origins and processes of production, environmental impact, and socioeconomic dimensions. It also discusses ‘cleantech’ initiatives, which often prioritize profitability over ecological stewardship. The study advocates for a paradigm shift in urban design towards greater adaptability, complexity, and inclusivity, embracing porosity, incompleteness, and seed planning. This holistic approach emphasizes citizen participation and bottom-up interventions, reimagining urban spaces as evolving ecosystems. The study calls for a reimagining of sustainability that transcends conventional green design concepts, promoting a more resilient and inclusive built environment through an open system approach grounded in adaptability, diversity, and equity principles.

Keywords: sustainability, clean-tech, open system design, sustainable design

Procedia PDF Downloads 67
18588 The Importance of Zenithal Lighting Systems for Natural Light Gains and for Local Energy Generation in Brazil

Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo

Abstract:

This paper presents an approach on the advantages of using adequate coverage in the zenithal lighting typology in various areas of architectural production, while at the same time to encourage to the design concerns inherent in this choice of roofing in Brazil. Understanding that sustainability needs to cover several aspects, a roofing system such as zenithal lighting system can contribute to the provision of better quality natural light for the interior of the building, which is related to the good health and welfare; it will also be able to contribute for the sustainable aspects and environmental needs, when it allows the generation of energy in semitransparent or opacity photovoltaic solutions and economize the artificial lightning. When the energy balance in the building is positive, that is, when the building generates more energy than it consumes, it may fit into the Net Zero Energy Building concept. The zenithal lighting systems could be an important ally in Brazil, when solved the burden of heat gains, participate in the set of pro-efficiency actions in search of "zero energy buildings". The paper presents comparative three cases of buildings that have used this feature in search of better environmental performance, both in light comfort and sustainability as a whole. Two of these buildings are examples in Europe: the Notley Green School in the UK and the Isofóton factory in Spain. The third building with these principles of shed´s roof is located in Brazil: the Ipel´s factory in São Paulo.

Keywords: natural lighting, net zero energy building, sheds, semi-transparent photovoltaics

Procedia PDF Downloads 197
18587 Material Research for Sustainable Design: An Exploration Towards the Application of Foam into Textile and Fashion Design

Authors: Jichi Wu

Abstract:

Though fast fashion and consumption do boost the economy and push the progress of the industry, they have also caused a mass of waste, which has led to great pressure on the environment. This project mainly focuses on how to develop new sustainable textile and fashion design through recycling, upcycling, and reusing. Substantial field researches were implemented from the very beginning, including collecting reusable material from recycling centers. Hot-pressed composite materials, hand-cutting, and weaving were finally selected as the core material/method of this project after attempts and experiments. Four pieces of menswear, as well as hats and other decorative products made from wasted foams and fabrics, were successfully manufactured. Results show that foam is not only possible for furniture but also for clothing. It helps people to realize that foam is warm, heatproof, anti-slippery, and crease-resistant. So, all advantages could inspire people that even common materials could have new usage and are worthy of upcycling.

Keywords: sustainable design, foam, upcycling, life cycle, textile design

Procedia PDF Downloads 131
18586 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Internet of Things, smart building, device interoperability, device integration, smart home

Procedia PDF Downloads 274
18585 Sustainable Food Systems in Community Development: Integrating Urban Food Security into a Growing Population

Authors: Opal Giulianelli, Pegah Zamani

Abstract:

Sustainable food has become a frequently debated topic in recent years due to a consumer push for environmentally sustainable food. While some research works on improving the monoculture farm systems that are currently in use, others focus on expanding the definition of sustainable food systems. This research looks at those concepts of alternative food systems applied to a more extensive city system. The goal is to create a theoretical site plan that could be implemented in emerging cities and other urban environments. This site plan combines the ideas of environmentally sustainable food development, such as food forests, urban farming, and community gardens. This would represent one part of a larger sustainable food system that can be altered depending on the environment or the people it is serving. However, this research is being carried out with the southeast United States in mind and, therefore, may prove difficult to apply to other regions, especially those of radically different climates.

Keywords: alternative food systems, urban design, food forests, aquaponics, hydroponics, food security, food system design

Procedia PDF Downloads 107
18584 Interaction Issues at Patan Stepwell in Western India

Authors: Shekhar Chatterjee

Abstract:

Architectural marvels of the Patan stepwell in Gujarat state in India were studied, to look into the cultural and design attributes in them. Direct observation, photography and interviewing the local people (especially senior citizens) were the methodology adopted. The aim was to look for clues into how culture and design affected architectural marvels of a building and convey that to the tourists. These interpretations from this building can offer many ideas to the contemporary design world in the form of design of modern day garments for various occasions, ornaments or accessory products for daily usage like bags, shoes and similar products. These monuments currently lack proper information system for guiding a tourist. Absence of any qualified tourist guides at the site compounds the problem further. This project investigates the feasibility of making the space more interactive for the tourist through proper digital information design and installations at places. Along with this, illumination and sound are also being used to narrate the history of these ancient monuments so that tourists get a flavor of the medieval past. Most importantly, all these digital interventions are low cost and done with easily available throw-away materials and can be replicated for other monuments as well.

Keywords: interaction, well, building, context

Procedia PDF Downloads 276
18583 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 121
18582 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 145
18581 Prefabricated Integral Design of Building Services

Authors: Mina Mortazavi

Abstract:

The common approach in the construction industry for restraint requirements in existing structures or new constructions is to have Non-Structural Components (NSCs) assembled and installed on-site by different MEP subcontractors. This leads to a lack of coordination and higher costs, construction time, and complications due to inaccurate building information modelling (BIM) systems. Introducing NSCs to a consistent BIM system from the beginning of the design process and considering their seismic loads in the analysis and design process can improve coordination and reduce costs and time. One solution is to use prefabricated mounts with attached MEPs delivered as an integral module. This eliminates the majority of coordination complications and reduces design and installation costs and time. An advanced approach is to have as many NSCs as possible installed in the same prefabricated module, which gives the structural engineer the opportunity to consider the involved component weights and locations in the analysis and design of the prefabricated support. This efficient approach eliminates coordination and access issues, leading to enhanced quality control. This research will focus on the existing literature on modular sub-assemblies that are integrated with architectural and structural components. Modular MEP systems take advantage of the precision provided by BIM tools to meet exact requirements and achieve a buildable design every time. Modular installations that include MEP systems provide efficient solutions for the installation of MEP services or components.

Keywords: building services, modularisation, prefabrication, integral building design

Procedia PDF Downloads 75
18580 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption, they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation and 15% in field measurement of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.

Keywords: sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving

Procedia PDF Downloads 642
18579 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 201
18578 Study on the Key Stakeholders' Perception and Establishment of Sustainability Goals in the Green Building Projects: The Case of Malaysia

Authors: Nor Kalsum M. Isa, Mohd Yazid M. Yunos, Anuar Alias, Mazdi Marzuki, Kamarul Ismail, Mohd H. Ibrahim

Abstract:

Green building is an emerging concept with the ultimate target to achieve sustainable development by integrating sustainability goals and principles into project development. Basically, a green building is a building that is designed, constructed and operated to boost environmental, economic, health and productivity performance over conventional buildings. The buildings have been proven to be successful in contributing towards sustainability and project success. The purpose of this study was to determine the benefits of sustainability application in building projects, looking towards project success from the perspective of Malaysian key project stakeholders. The study also aimed to explore the establishment of sustainability goals in the green building projects in Malaysia. The Triple Bottom Line (TBL) Concept of Sustainability was used as the foundation theoretical framework. Surveys, interviews and multiple case study methods were employed. A sample of 188 Malaysian building project stakeholders was selected for questionnaire surveys, and 15 stakeholders from three award-winning green building projects in Malaysia were involved in the interviews. The study found that the majority of the respondents were less aware that the sustainability integration in the building project can significantly affect cost reduction, schedule effectiveness and stakeholders’ satisfaction with the performance of buildings as at the same level as the quality performance. Of the four sustainability goals, the environmental aspect was given more priority than others in the development of the green building projects.

Keywords: green building, sustainability, project stakeholders, Malaysia

Procedia PDF Downloads 569
18577 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 432