Search results for: structural lightweight concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5844

Search results for: structural lightweight concrete

5664 Use of Recycled Aggregates in Current Concretes

Authors: K. Krizova, R. Hela

Abstract:

The paper a summary of the results of concretes with partial substitution of natural aggregates with recycled concrete is solved. Design formulas of the concretes were characterised with 20, 40 and 60% substitution of natural 8-16 mm fraction aggregates with a selected recycled concrete of analogous coarse fractions. With the product samples an evaluation of coarse fraction aggregates influence on fresh concrete consistency and concrete strength in time was carried out. The results of concretes with aggregates substitution will be compared to reference formula containing only the fractions of natural aggregates.

Keywords: recycled concrete, natural aggregates, fresh concrete, properties of concrete

Procedia PDF Downloads 370
5663 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: nondestructive testing, pavement moduli backcalculation, finite element method, concrete pavements

Procedia PDF Downloads 142
5662 Effect of Treated Grey Water on Bacterial Concrete

Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.

Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater

Procedia PDF Downloads 72
5661 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: concrete, FEM, pavement, sensitivity, simulation

Procedia PDF Downloads 303
5660 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building

Procedia PDF Downloads 347
5659 Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash

Authors: Suman Kumar Adhikary, Zymantus Rudzionis, Arvind Balakrishnan

Abstract:

This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples.

Keywords: self-compacting concrete, polyolefin fibers, fiber reinforced concrete, CMOD test of concrete

Procedia PDF Downloads 152
5658 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code

Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili

Abstract:

Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.

Keywords: optimization, automation, API, Malab, RC structures

Procedia PDF Downloads 24
5657 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 435
5656 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed S. Sarhan

Abstract:

This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.

Keywords: concrete beam, deflection, ductility, plate

Procedia PDF Downloads 136
5655 Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars

Authors: Mohammad R. Irshidat, Rami H. Haddad, Hanadi Al-Mahmoud

Abstract:

Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority.

Keywords: concrete beams, FRP rebar, flexural behavior, heat-damaged

Procedia PDF Downloads 420
5654 Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete

Authors: H. B. Mahmud, Syamsul Bahri, Y. W. Yee, Y. T. Yeap

Abstract:

This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.

Keywords: compressive strength, durability, high performance concrete, rice husk ash

Procedia PDF Downloads 308
5653 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects

Authors: Rabea Sefrin, Christian Glock, Juergen Schnell

Abstract:

The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.

Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation

Procedia PDF Downloads 90
5652 Pullout Strength of Textile Reinforcement in Concrete by Embedded Length and Concrete Strength

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

The deterioration of the reinforced concrete is continuously accelerated due to aging of the reinforced concrete, enlargement of the structure, increase if the self-weight due to the manhattanization and cracking due to external force. Also, due to the abnormal climate phenomenon, cracking of reinforced concrete structures is accelerated. Therefore, research on the Textile Reinforced Concrete (TRC) which replaced reinforcement with textile is under study. However, in previous studies, adhesion performance to single yarn was examined without parameters, which does not reflect the effect of fiber twisting and concrete strength. In the present paper, the effect of concrete strength and embedded length on 2400tex (gram per 1000 meters) and 640tex textile were investigated. The result confirm that the increasing compressive strength of the concrete did not affect the pullout strength. However, as the embedded length increased, the pullout strength tended to increase gradually, especially at 2400tex with more twists.

Keywords: textile, TRC, pullout, strength, embedded length, concrete

Procedia PDF Downloads 377
5651 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis

Procedia PDF Downloads 145
5650 A Study on Marble Based Geopolymer Mortar / Concrete

Authors: Wei-Hao Lee, Ta-Wui Cheng, Yung-Chin Ding, Tai-Tien Wang

Abstract:

The purpose of this study is trying to use marble wastes as the raw material to fabricate geopolymer green mortar / concrete. Experiment results show that using marble to make geopolymer mortar and concrete, the compressive strength after 28 days curing can reach 35 MPa and 25 MPa, respectively. The characteristics of marble-based geopolymer green mortar and concrete will keep testing for a long term in order to understand the effect parameters. The study is based on resource recovery and recycling. Its basic characteristics are low consumption, low carbon dioxide emission and high efficiency that meet the international tendency 'Circular Economy.' By comparing with Portland cement mortar and concrete, production 1 ton of marble-based geopolymer mortar and concrete, they can be saved around 50.3% and 49.6% carbon dioxide emission, respectively. Production 1 m3 of marble-based geopolymer concrete costs about 62 USD that cheaper than that of traditional Portland concrete. It is proved that the marble-based geopolymer concrete has great potential for further engineering development.

Keywords: marble, geopolymer, geopolymer concrete, CO₂ emission

Procedia PDF Downloads 413
5649 Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete

Authors: Shegufta Zahan, Muhammad A. Zahin, Muhammad M. Hossain, Raquib Ahsan

Abstract:

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.

Keywords: characterization, furnace, pozzolanic behavior, rice husk ash

Procedia PDF Downloads 82
5648 Properties of Self-Compacting Concrete Mixed with Fly Ash

Authors: Abhinandan Singh Gill, Gurbir Kaur Jawanda

Abstract:

Since the introduction of self-consolidating concrete (SCC) in Japan during the late 1980’s, acceptance and usage of this concrete in the construction industry has been steadily gaining momentum. In the United States, the usage of SCC has been spearheaded by the precast concrete industry. Good SCC must possess the following key fresh properties: filling ability, passing ability, and resistance to segregation. Self-compacting concrete is one of 'the most revolutionary developments' in concrete research; this concrete is able to flow and to fill the most restocked places of the form work without vibration. There are several methods for testing its properties. In the fresh state: the most frequently used are slump flow test, L box and V-funnel. This work presents properties of self-compacting concrete, mixed with fly ash. The test results for acceptance characteristics of self-compacting concrete such as slump flow; V-funnel and L-Box are presented. Further, the compressive strength at the ages of 7, 28 days was also determined and results are included here.

Keywords: compressive strength, fly ash, self-compacting concrete, slump flow test, super plasticizer

Procedia PDF Downloads 385
5647 Durability of Reinforced Concrete Structure on Very High Aggressive Environment: A Case Study

Authors: Karla Peitl Miller, Leomar Bravin Porto, Kaitto Correa Fraga, Nataniele Eler Mendes

Abstract:

This paper presents the evaluation and study of a real reinforced concrete structure of a fertilizer storage building, constructed on a Vale’s Port at Brazil, which has been recently under refurbishment. Data that will be shared and commented aim to show how wrong choices in project concepts allied to a very high aggressive environment lead to a fast track degradation, incurring on a hazardous condition associated with huge and expensive treatment for repair and guarantee of minimum performance conditions and service life. It will be also shown and discussed all the covered steps since pathological manifestations first signs were observed until the complete revitalization and reparation planning would be drawn. The conclusions of the work easily explicit the importance of professional technical qualification, the importance of minimum requirements for design and structural reforms, and mainly, the importance of good inspection and diagnostic engineering continuous work.

Keywords: durability, reinforced concrete repair, structural inspection, diagnostic engineering

Procedia PDF Downloads 114
5646 Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams

Authors: Ali Sagiroglu, Sema Noyan Alacali, Guray Arslan

Abstract:

This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined.

Keywords: reinforced concrete, beam, shear strength, failure probability, safety factor

Procedia PDF Downloads 802
5645 Evaluation of the Mechanical and Microstructural Properties of Sustainable Concrete Exposed to Acid Solution

Authors: Adil Tamimi

Abstract:

Limestone powder is a natural material that is available in many parts of the world. In this research self-compacting concrete was designed and prepared using limestone powder. The resulted concrete was exposed to the hydrochloric acid solution and compared with reference concrete. Mechanical properties of both fresh and hardened concrete have been evaluated. Scanning Electron Microscopy “SEM” has been unitized to analyse the morphological development of the hydration products. In sulphuric acid solution, a large formation of gypsum was detected in both samples of self-compacting concrete and conventional concrete. The Higher amount of thaumasite and ettringite was also detected in the SCC sample. In hydrochloric acid solution, monochloroaluminate was detected.

Keywords: self-compacting concrete, mechanical properties, Scanning Electron Microscopy, acid solution

Procedia PDF Downloads 480
5644 Strength & Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent

Authors: Shashank Gupta, Shiva Garg

Abstract:

The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement.

Keywords: AAC, olive oil, hydrogen peroxide, oleic acid, steam curing

Procedia PDF Downloads 333
5643 A Damage-Plasticity Concrete Model for Damage Modeling of Reinforced Concrete Structures

Authors: Thanh N. Do

Abstract:

This paper addresses the modeling of two critical behaviors of concrete material in reinforced concrete components: (1) the increase in strength and ductility due to confining stresses from surrounding transverse steel reinforcements, and (2) the progressive deterioration in strength and stiffness due to high strain and/or cyclic loading. To improve the state-of-the-art, the author presents a new 3D constitutive model of concrete material based on plasticity and continuum damage mechanics theory to simulate both the confinement effect and the strength deterioration in reinforced concrete components. The model defines a yield function of the stress invariants and a compressive damage threshold based on the level of confining stresses to automatically capture the increase in strength and ductility when subjected to high compressive stresses. The model introduces two damage variables to describe the strength and stiffness deterioration under tensile and compressive stress states. The damage formulation characterizes well the degrading behavior of concrete material, including the nonsymmetric strength softening in tension and compression, as well as the progressive strength and stiffness degradation under primary and follower load cycles. The proposed damage model is implemented in a general purpose finite element analysis program allowing an extensive set of numerical simulations to assess its ability to capture the confinement effect and the degradation of the load-carrying capacity and stiffness of structural elements. It is validated against a collection of experimental data of the hysteretic behavior of reinforced concrete columns and shear walls under different load histories. These correlation studies demonstrate the ability of the model to describe vastly different hysteretic behaviors with a relatively consistent set of parameters. The model shows excellent consistency in response determination with very good accuracy. Its numerical robustness and computational efficiency are also very good and will be further assessed with large-scale simulations of structural systems.

Keywords: concrete, damage-plasticity, shear wall, confinement

Procedia PDF Downloads 146
5642 Investigation on Behavior of Fixed-Ended Reinforced Concrete Deep Beams

Authors: Y. Heyrani Birak, R. Hizaji, J. Shahkarami

Abstract:

Reinforced Concrete (RC) deep beams are special structural elements because of their geometry and behavior under loads. For example, assumption of strain- stress distribution is not linear in the cross section. These types of beams may have simple supports or fixed supports. A lot of research works have been conducted on simply supported deep beams, but little study has been done in the fixed-end RC deep beams behavior. Recently, using of fixed-ended deep beams has been widely increased in structures. In this study, the behavior of fixed-ended deep beams is investigated, and the important parameters in capacity of this type of beams are mentioned.

Keywords: deep beam, capacity, reinforced concrete, fixed-ended

Procedia PDF Downloads 313
5641 Effect of Stirrup Corrosion on Concrete Confinement Strength

Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya

Abstract:

This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.

Keywords: bridge, column, concrete, corrosion, inspection, stirrup reinforcement

Procedia PDF Downloads 425
5640 Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate

Authors: S. Boudali, A. M. Soliman, B. Abdulsalam, K. Ayed, D. E. Kerdal, S. Poncet

Abstract:

This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 µm and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture.

Keywords: compressive strength, recycled concrete aggregates, microstructure, interfacial transition zone, powder fine recycled aggregate

Procedia PDF Downloads 310
5639 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

Authors: Ji-Wook Mauk, Yu-Suk Kim, Hyung-Joon Kim

Abstract:

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled RC frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was established for comparison. Non-linear static analyses for the studied frames were performed to investigate their structural behavior under extreme loading conditions and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled RC frames are increased and their ductility is reduced, as infilled masonry walls are higher. Especially, Reinforced concrete frames with a higher partial infilled masonry wall would experience shear failures. Non-linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frames present stable collapse mechanism while the reinforced concrete frames with a partially infilled masonry wall collapse in more brittle manner due to short-column effects.

Keywords: fully infilled RC frame, partially infilled RC frame, masonry wall, short-column effect

Procedia PDF Downloads 393
5638 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 426
5637 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: compressive strength, GGBS, normal concrete, self-consolidating concrete

Procedia PDF Downloads 407
5636 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.

Keywords: reactive silica sand powder concrete (RSSPC), consolidation, compressive strength, normal curing, thermal accelerated curing

Procedia PDF Downloads 226
5635 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge

Authors: Mohanad Alfach, Amjad Al Helwani

Abstract:

Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).

Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional

Procedia PDF Downloads 237