Search results for: phase velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5764

Search results for: phase velocity

5584 Molecular Clustering and Velocity Increase in Converging-Diverging Nozzle in Molecular Dynamics Simulation

Authors: Jeoungsu Na, Jaehawn Lee, Changil Hong, Suhee Kim

Abstract:

A molecular dynamics simulation in a converging-diverging nozzle was performed to study molecular collisions and their influence to average flow velocity according to a variety of vacuum levels. The static pressures and the dynamic pressure exerted by the molecule collision on the selected walls were compared to figure out the intensity variances of the directional flows. With pressure differences constant between the entrance and the exit of the nozzle, the numerical experiment was performed for molecular velocities and directional flows. The result shows that the velocities increased at the nozzle exit as the vacuum level gets higher in that area because less molecular collisions.

Keywords: cavitation, molecular collision, nozzle, vacuum, velocity increase

Procedia PDF Downloads 420
5583 Turning Parameters Affect Time up and Go Test Performance in Pre-Frail Community-Dwelling Elderly

Authors: Kuei-Yu Chien, Hsiu-Yu Chiu, Chia-Nan Chen, Shu-Chen Chen

Abstract:

Background: Frailty is associated with decreased physical performances that affect mobility of the elderly. Time up and go test (TUG) was the common method to evaluate mobility in the community. The purpose of this study was to compare the parameters in different stages of Time up and go test (TUG) and physical performance between pre-frail elderly (PFE) and non-frail elderly (NFE). We also investigated the relationship between TUG parameters and physical performance. Methods: Ninety-two community-dwelling older adults were as participants in this study. Based on Canadian Study of Health and Aging Clinical Frailty Scale, 22 older adults were classified as PFE (71.77 ± 6.05 yrs.) and 70 were classified as NFE (71.2 ± 5.02 yrs.). We performed body composition and physical performance, including balance, muscular strength/endurance, mobility, cardiorespiratory endurance, and flexibility. Results: Pre-frail elderly took significantly longer time than NFE in TUG test (p=.004). Pre-frail elderly had lower turning average angular velocity (p = .017), turning peak angular velocity (p = .041) and turning-stand to sit peak angular velocity (p = .037) than NFE. The turning related parameters related to open-eye stand on right foot, 30-second chair stand test, back scratch, and 2-min step tests. Conclusions: Turning average angular velocity, turning peak angular velocity and turning-stand to sit peak angular velocity mainly affected the TUG performance. We suggested that static/dynamic balance, agility, flexibility, and muscle strengthening of lower limbs exercise were important to PFE.

Keywords: mobility, aglity, active ageing, functional fitness

Procedia PDF Downloads 169
5582 Anesthetic Considerations for Carotid Endarterectomy: Prospective Study Based on Clinical Trials

Authors: Ahmed Yousef A. Al Sultan

Abstract:

Introduction: The aim of this review is based on clinical research that studies the changes in middle cerebral artery velocity using Transcranial Doppler (TCD) and cerebral oxygen saturation using cerebral oximetry in patients undergoing carotid endarterectomy (CEA) surgery under local anesthesia (LA). Patients with or without neurological symptoms during the surgery are taking a role in this study using triplet method of cerebral oximetry, transcranial doppler and awake test in detecting any cerebral ischemic symptoms. Methods: about one hundred patients took part during their CEA surgeries under local anesthesia, using triple assessment mentioned method, Patients requiring general anesthesia be excluded from analysis. All data were recorded at eight surgery stages separately to serve this study. Results: In total regional cerebral oxygen saturation (rSO2), middle cerebral artery (MCA) velocity, and pulsatility index were significantly decreased during carotid artery clamping step in CEA procedures on the targeted carotid side. With most observed changes in MCA velocity during the study. Discussion: Cerebral oxygen saturation and middle cerebral artery velocity were significantly decreased during clamping step of the procedures on the targeted side. The team with neurological symptoms during the procedures showed higher changes of rSO2 and MCA velocity than the team without neurological symptoms. Cerebral rSO2 and MCA velocity significantly increased directly after de-clamping of the internal carotid artery on the affected side.

Keywords: awake testing, carotid endarterectomy, cerebral oximetry, Tanscranial Doppler

Procedia PDF Downloads 154
5581 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 430
5580 Earthquake Relocations and Constraints on the Lateral Velocity Variations along the Gulf of Suez, Using the Modified Joint Hypocenter Method Determination

Authors: Abu Bakr Ahmed Shater

Abstract:

Hypocenters of 250 earthquakes recorded by more than 5 stations from the Egyptian seismic network around the Gulf of Suez were relocated and the seismic stations correction for the P-wave is estimated, using the modified joint hypocenter method determination. Five stations TR1, SHR, GRB, ZAF and ZET have minus signs in the station P-wave travel time corrections and their values are -0.235, -0.366, -0.288, -0.366 and -0.058, respectively. It is possible to assume that, the underground model in this area has a particular characteristic of high velocity structure in which the other stations TR2, RDS, SUZ, HRG and ZNM have positive signs and their values are 0.024, 0.187, 0.314, 0.645 and 0.145, respectively. It is possible to assume that, the underground model in this area has particular characteristic of low velocity structure. The hypocenteral location determined by the Modified joint hypocenter method is more precise than those determined by the other routine work program. This method simultaneously solves the earthquake locations and station corrections. The station corrections reflect, not only the different crustal conditions in the vicinity of the stations, but also the difference between the actual and modeled seismic velocities along each of the earthquake - station ray paths. The stations correction obtained is correlated with the major surface geological features in the study area. As a result of the relocation, the low velocity area appears in the northeastern and southwestern sides of the Gulf of Suez, while the southeastern and northwestern parts are of high velocity area.

Keywords: gulf of Suez, seismicity, relocation of hypocenter, joint hypocenter determination

Procedia PDF Downloads 345
5579 Microjetting from a Grooved Metal Surface under Decaying Shocks

Authors: Jian-Li Shao

Abstract:

Using Molecular Dynamic (MD) simulations, we simulated the microjet from the metal surface under decaying shock loading. The microjetting processes under release melting conditions are presented in detail, and some properties on the microjet mass and velocity are revealed. The phased increase of microjet mass with shock pressure is found. For all cases, the ratio of the maximal jetting velocity to the surface velocity approximately keeps a constant for liquid state. In addition, the temperature of the microjet can be always above the melting point. When introducing slow decaying profiles, the microjet mass begins to increase with the decay rate, which is dominated by the deformation of the bubble during pull-back. When the decay rate becomes fast enough, the microspall occurs as expected, meanwhile, the microjet appears to reduce because of the shock energy reduction.

Keywords: microjetting, shock, metal, molecular dynamics

Procedia PDF Downloads 182
5578 Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance

Authors: V. Kumar, K. Jha

Abstract:

The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance.

Keywords: convergent-divergent vortex finder, cyclone separator, discrete phase modeling, Reynolds stress model

Procedia PDF Downloads 160
5577 Microstructural Origin of Morphotropic Phase Boundary and Magnetic Ordering in the Multiferroic BiFeO3-PbTiO3

Authors: Bastola Narayan, Rajeev Ranjan

Abstract:

The morphotropic phase boundary (MPB) in the magnetoelectric (1-x)BiFeO3-(x)PbTiO3 has remained a matter of controversy ever since its discovery in 1964. The nature of the phase stabilized (single phase tetragonal or coexistence of tetragonal and rhombohedral phases) is very sensitive to the slight changes in the synthesis conditions. It thus remained an enigma as to what is the essential physical factor which is controlled by the slight difference in the synthesis conditions that finally determines, whether the phase formed will be single phase or coexistence of phases. In this paper, we demonstrate that the nature of the phase stabilized in this system is uniquely dependent on the crystallite size. The system is shown to exhibit features of abnormal grain growth (AGG) during sintering with abrupt increase in the grain size from ~ 1 micron to ~ 10 microns. The 10 micron grains exhibit pure tetragonal phase while the 1 micron grains exhibit coexistence of rhombohedral and tetragonal ferroelectric phases. The Rietveld analysis of powder neutron diffraction shows a paramagnetic to antiferromagnetic order transition inducing with crystalline size reduction from 10 micron to 1 micron. Since tetragonal phase is known to have paramagnetic order and rhombohedral phase has antiferromagnetic order in room temperature, this further strengthens our argument of size induced structure transition.

Keywords: size driven MPB, size driven magnetic ordering, abnormal grain growth, phase formation in BF-PT system

Procedia PDF Downloads 326
5576 Classification of Impact Damages with Respect of Damage Tolerance Design Approach and Airworthiness Requirements

Authors: T. Mrna, R. Doubrava

Abstract:

This paper describes airworthiness requirements with respect damage tolerance. Damage tolerance determines the amount and magnitude of damage on parts of the airplane. Airworthiness requirements determine the amount of damage that can still be in flight capable of the condition. Component damage can be defined as barely visible impact damage, visible impact damage or clear visible impact damage. Damage is also distributed it according to the velocity. It is divided into low or high velocity impact damage. The severity of damage to the part of airplane divides the airworthiness requirements into several categories according to severity. Airworthiness requirements are determined by type airplane. All types of airplane do not have the same conditions for airworthiness requirements. This knowledge is important for designing and operating an airplane.

Keywords: airworthiness requirements, composite, damage tolerance, low and high velocity impact

Procedia PDF Downloads 557
5575 The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone

Authors: A. Elsariti, T. Evans

Abstract:

An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations.

Keywords: ultrasound scattering, sound speed, density fluctuations, attenuation coefficient

Procedia PDF Downloads 315
5574 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient

Procedia PDF Downloads 115
5573 Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations.

Keywords: jet, counterflow, velocity, temperature, jet inclination

Procedia PDF Downloads 259
5572 Computational Fluid Dynamics of a Bubbling Fluidized Bed in Wood Pellets

Authors: Opeyemi Fadipe, Seong Lee, Guangming Chen, Steve Efe

Abstract:

In comparison to conventional combustion technologies, fluidized bed combustion has several advantages, such as superior heat transfer characteristics due to homogeneous particle mixing, lower temperature needs, nearly isothermal process conditions, and the ability to operate continuously. Computational fluid dynamics (CFD) can help anticipate the intricate combustion process and the hydrodynamics of a fluidized bed thoroughly by using CFD techniques. Bubbling Fluidized bed was model using the Eulerian-Eulerian model, including the kinetic theory of the flow. The model was validated by comparing it with other simulation of the fluidized bed. The effects of operational gas velocity, volume fraction, and feed rate were also investigated numerically. A higher gas velocity and feed rate cause an increase in fluidization of the bed.

Keywords: fluidized bed, operational gas velocity, volume fraction, computational fluid dynamics

Procedia PDF Downloads 69
5571 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 387
5570 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA

Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng

Abstract:

This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.

Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation

Procedia PDF Downloads 385
5569 Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures

Authors: A. Radwan, A. Elbatran, A. Mehanna, M. Shehadeh

Abstract:

The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity.

Keywords: corrosion, Reynold's numbers, sacrificial anode, velocity

Procedia PDF Downloads 547
5568 Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6

Authors: Asmaa Zaraq

Abstract:

In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m.

Keywords: double perovskites, caracterisation DRX, transition de phase

Procedia PDF Downloads 504
5567 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger

Authors: Appasaheb Raul

Abstract:

Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.

Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5

Procedia PDF Downloads 506
5566 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 190
5565 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change

Procedia PDF Downloads 237
5564 Detailed Microzonation Studies around Denizli, Turkey

Authors: A. Aydin, E. Akyol, N. Soyatik

Abstract:

This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: seismic microzonation, liquefaction, land use management, seismic refraction

Procedia PDF Downloads 267
5563 Rapid Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, complexity, parallelism

Procedia PDF Downloads 525
5562 Phase Control in Population Inversion Using Chirped Laser

Authors: Avijit Datta

Abstract:

We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t).

Keywords: phase control, population transfer, chirped laser pulses, rapid adiabatic passage, laser-molecule interaction

Procedia PDF Downloads 349
5561 Prediction of Flow Around a NACA 0015 Profile

Authors: Boukhadia Karima

Abstract:

The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.

Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel

Procedia PDF Downloads 400
5560 Rapid Parallel Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information's are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, low complexity, parallelism

Procedia PDF Downloads 485
5559 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 514
5558 Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System

Authors: Perumalsamy Muthiah, Murugesan Thanapalan

Abstract:

The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed.

Keywords: aqueous two-phase system, phase diagram, extraction, cheese whey

Procedia PDF Downloads 401
5557 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 75
5556 Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation

Authors: Ammar Maziz, Mostapha Tarfaoui, Said Rechak

Abstract:

The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved.

Keywords: composite materials, low velocity impact, FEA, dynamic behavior, progressive damage modeling

Procedia PDF Downloads 154
5555 An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel

Authors: Sunil Kumar Singal, Manoj Sood, Upendra Bajpai

Abstract:

Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site.

Keywords: darrieus turbine, flow velocity, open channel, savoinus turbine, water depth, hydropower

Procedia PDF Downloads 66