Search results for: nonlinear hysteretic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17502

Search results for: nonlinear hysteretic model

17322 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 217
17321 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 637
17320 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 173
17319 Hidden Oscillations in the Mathematical Model of the Optical Binary Phase Shift Keying (BPSK) Costas Loop

Authors: N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev

Abstract:

Nonlinear analysis of the phase locked loop (PLL)-based circuits is a challenging task. Thus, the simulation is widely used for their study. In this work, we consider a mathematical model of the optical Costas loop and demonstrate the limitations of simulation approach related to the existence of so-called hidden oscillations in the phase space of the model.

Keywords: optical Costas loop, mathematical model, simulation, hidden oscillation

Procedia PDF Downloads 439
17318 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme

Authors: Arun Kumar Yadav, Badam Singh Kushvah

Abstract:

In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.

Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control

Procedia PDF Downloads 187
17317 Designing Back-Stepping Sliding Mode Controller for a Class of 4Y Octorotor

Authors: I. Khabbazi, R. Ghasemi

Abstract:

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octorotor UAV and its feature will be shown.

Keywords: sliding mode, backstepping, decoupling, octorotor UAV

Procedia PDF Downloads 438
17316 Lyapunov Functions for Extended Ross Model

Authors: Rahele Mosleh

Abstract:

This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.

Keywords: global stability, invariant solutions, Lyapunov function, stationary points

Procedia PDF Downloads 164
17315 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 351
17314 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation

Procedia PDF Downloads 416
17313 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 145
17312 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers

Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier

Abstract:

The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.

Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law

Procedia PDF Downloads 28
17311 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal

Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik

Abstract:

Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.

Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system

Procedia PDF Downloads 234
17310 Some Efficient Higher Order Iterative Schemes for Solving Nonlinear Systems

Authors: Sandeep Singh

Abstract:

In this article, two classes of iterative schemes are proposed for approximating solutions of nonlinear systems of equations whose orders of convergence are six and eight respectively. Sixth order scheme requires the evaluation of two vector-functions, two first Fr'echet derivatives and three matrices inversion per iteration. This three-step sixth-order method is further extended to eighth-order method which requires one more step and the evaluation of one extra vector-function. Moreover, computational efficiency is compared with some other recently published methods in which we found, our methods are more efficient than existing numerical methods for higher and medium size nonlinear system of equations. Numerical tests are performed to validate the proposed schemes.

Keywords: Nonlinear systems, Computational complexity, order of convergence, Jarratt-type scheme

Procedia PDF Downloads 135
17309 Fiber Based Pushover Analysis of Reinforced Concrete Frame

Authors: Shewangizaw Tesfaye Wolde

Abstract:

The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.

Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete

Procedia PDF Downloads 76
17308 Duality in Multiobjective Nonlinear Programming under Generalized Second Order (F, b, φ, ρ, θ)− Univex Functions

Authors: Meraj Ali Khan, Falleh R. Al-Solamy

Abstract:

In the present paper, second order duality for multiobjective nonlinear programming are investigated under the second order generalized (F, b, φ, ρ, θ)− univex functions. The weak, strong and converse duality theorems are proved. Further, we also illustrated an example of (F, b, φ, ρ, θ)− univex functions. Results obtained in this paper extend some previously known results of multiobjective nonlinear programming in the literature.

Keywords: duality, multiobjective programming, univex functions, univex

Procedia PDF Downloads 353
17307 Supplemental VisCo-friction Damping for Dynamical Structural Systems

Authors: Sharad Singh, Ajay Kumar Sinha

Abstract:

Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.

Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping

Procedia PDF Downloads 157
17306 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation

Authors: Sarun Phibanchon, Yuttakarn Rattanachai

Abstract:

The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.

Keywords: soliton, ion-acoustic waves, plasma, spectral method

Procedia PDF Downloads 409
17305 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 289
17304 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 130
17303 Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations

Authors: A. Zerarka, W. Djoudi

Abstract:

We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions.

Keywords: fractional transformations, nonlinear equation, travelling wave solutions, lattice equation

Procedia PDF Downloads 656
17302 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 98
17301 The Role of the Elastic Foundation Having Nonlinear Stiffness Properties in the Vibration of Structures

Authors: E. Feulefack Songong, A. Zingoni

Abstract:

A vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Although vibrations can be linear or nonlinear depending on the basic components of the system, the interest is mostly pointed towards nonlinear vibrations. This is because most structures around us are to some extent nonlinear and also because we need more accurate values in an analysis. The goal of this research is the integration of nonlinearities in the development and validation of structural models and to ameliorate the resistance of structures when subjected to loads. Although there exist many types of nonlinearities, this thesis will mostly focus on the vibration of free and undamped systems incorporating nonlinearity due to stiffness. Nonlinear stiffness has been a concern to many engineers in general and Civil engineers in particular because it is an important factor that can bring a good modification and amelioration to the response of structures when subjected to loads. The analysis of systems will be done analytically and then numerically to validate the analytical results. We will first show the benefit and importance of stiffness nonlinearity when it is implemented in the structure. Secondly, We will show how its integration in the structure can improve not only the structure’s performance but also its response when subjected to loads. The results of this study will be valuable to practicing engineers as well as industry practitioners in developing better designs and tools for their structures and mechanical devices. They will also serve to engineers to design lighter and stronger structures and to give good predictions as for the behavior of structures when subjected to external loads.

Keywords: elastic foundation, nonlinear, plates, stiffness, structures, vibration

Procedia PDF Downloads 134
17300 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests

Authors: Mohamed Khiatine, Ramdane Bahar

Abstract:

The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.

Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.

Procedia PDF Downloads 104
17299 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells

Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis

Abstract:

This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.

Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening

Procedia PDF Downloads 71
17298 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine

Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi

Abstract:

Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.

Keywords: non linear controller, robust, sliding mode, kinetic energy

Procedia PDF Downloads 498
17297 Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems

Authors: Ali Afaghi, Sehraneh Ghaemi

Abstract:

The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications.

Keywords: fractional-order multi-agent systems, leader-following consensus, nonlinear dynamics, directed graphs

Procedia PDF Downloads 398
17296 Predictive Output Feedback Linearization for Safe Control of Collaborative Robots

Authors: Aliasghar Arab

Abstract:

Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better.

Keywords: robotics, collaborative robots, safety, autonomous robots

Procedia PDF Downloads 96
17295 Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide

Authors: Ali Ballouch, Nourelhouda Choukri, Zouhair Soufiani, Mohamed El Jouad, Mohamed Addou

Abstract:

For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature.

Keywords: ZnO, characterization, non-linear optical properties, optoelectronics

Procedia PDF Downloads 480
17294 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.

Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering

Procedia PDF Downloads 513
17293 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji

Abstract:

In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.

Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed

Procedia PDF Downloads 379