Search results for: muscle power
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6781

Search results for: muscle power

6601 Evaluation of Bone and Body Mineral Profile in Association with Protein Content, Fat, Fat-Free, Skeletal Muscle Tissues According to Obesity Classification among Adult Men

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity is associated with increased fat mass as well as fat percentage. Minerals are the elements, which are of vital importance. In this study, the relationships between body as well as bone mineral profile and the percentage as well as mass values of fat, fat-free portion, protein, skeletal muscle were evaluated in adult men with normal body mass index (N-BMI), and those classified according to different stages of obesity. A total of 103 adult men classified into five groups participated in this study. Ages were within 19-79 years range. Groups were N-BMI (Group 1), overweight (OW) (Group 2), first level of obesity (FLO) (Group 3), second level of obesity (SLO) (Group 4) and third level of obesity (TLO) (Group 5). Anthropometric measurements were performed. BMI values were calculated. Obesity degree, total body fat mass, fat percentage, basal metabolic rate (BMR), visceral adiposity, body mineral mass, body mineral percentage, bone mineral mass, bone mineral percentage, fat-free mass, fat-free percentage, protein mass, protein percentage, skeletal muscle mass and skeletal muscle percentage were determined by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical package (SPSS) for Windows Version 16.0 was used for statistical evaluations. The values below 0.05 were accepted as statistically significant. All the groups were matched based upon age (p > 0.05). BMI values were calculated as 22.6 ± 1.7 kg/m2, 27.1 ± 1.4 kg/m2, 32.0 ± 1.2 kg/m2, 37.2 ± 1.8 kg/m2, and 47.1 ± 6.1 kg/m2 for groups 1, 2, 3, 4, and 5, respectively. Visceral adiposity and BMR values were also within an increasing trend. Percentage values of mineral, protein, fat-free portion and skeletal muscle masses were decreasing going from normal to TLO. Upon evaluation of the percentages of protein, fat-free portion and skeletal muscle, statistically significant differences were noted between NW and OW as well as OW and FLO (p < 0.05). However, such differences were not observed for body and bone mineral percentages. Correlation existed between visceral adiposity and BMI was stronger than that detected between visceral adiposity and obesity degree. Correlation between visceral adiposity and BMR was significant at the 0.05 level. Visceral adiposity was not correlated with body mineral mass but correlated with bone mineral mass whereas significant negative correlations were observed with percentages of these parameters (p < 0.001). BMR was not correlated with body mineral percentage whereas a negative correlation was found between BMR and bone mineral percentage (p < 0.01). It is interesting to note that mineral percentages of both body as well as bone are highly affected by the visceral adiposity. Bone mineral percentage was also associated with BMR. From these findings, it is plausible to state that minerals are highly associated with the critical stages of obesity as prominent parameters.

Keywords: bone, men, minerals, obesity

Procedia PDF Downloads 90
6600 Improving Power Quality in Wind Power Generation System

Authors: A. Omeiri, A. Djellad, P. O. Logerais, O. Riou, J. F. Durastanti

Abstract:

With the growing of electrical energy demand, wind power capacity has experienced tremendous growth in the past decade, thanks to wind power’s environmental benefits. Direct driven permanent magnet synchronous generator (PMSG) with a full size back-to-back converter set is one of the promising technologies employed with wind power generation. Wind grid integration brings the problems of voltage fluctuation and harmonic pollution. In the present study, the filter is placed between the wind system and the network to reduce the total harmonic distortion (THD) and enhance power quality during disturbances. The models of wind turbine, PMSG, power electronic converters and the filter are implemented in MATLAB/SIMULINK environment.

Keywords: wind energy conversion system, PMSG, PWM, THD, power quality, passive filter

Procedia PDF Downloads 623
6599 Effect of Diet Inulin Prebiotic on Growth, Reproductive Performance, Carcass Composition and Resistance to Environmental Stresses in Zebra Danio (Danio rerio)

Authors: Ehsan Ahmadifar

Abstract:

In this research, the effects of different levels (control group (T0), (T1)1, (T2)2 and (T3)3 gr Inulin per Kg diet) of prebiotic Inulin as nutritional supplement on Danio rerio were investigated for 4 month. Since the beginning of feeding larvae until adult (average weight: 67.1 g, length: 4.5 cm) were fed with experimental diets. The survival rate of fish had no significant effect on rate survival (P > 0.05). The highest food conversion ratio (FCR) was in control group and the lowest was observed in T3. Treatment of T3 significantly caused the best feed conversion ratio in Zebra fish (P < 0.05). By increasing the inulin diet during the experiment, specific growth rate increased. The highest and the lowest body weight gain and condition factor were observed in T3 and control, respectively (P < 0.05). Adding 3 gr inulin in Zebra fish diet can improve the performance of the growth indices and final biomass, also this prebiotic can be considered as a suitable supplement for Cyprinidae diet. In the first sampling stage for feeding fish, fat and muscle protein was significantly higher than the second sampling stage (P < 0.05). Given that the second stage fish were full sexual maturity, the amount of fat in muscle decreased (P < 0.05). Moisture and ash levels were significantly (P < 0.05) higher in the second stage sampling than the first stage. Overall, different stage of living affected on muscle chemical composition muscle. Reproductive performance in treatment T2 and T3 were significantly higher than other treatments (P < 0.05). According to the results, the prebiotic inulin does not have a significant impact on the sex ratio in zebrafish (P > 0.05). Based on histology of the gonads, the use of dietary inulin accelerates the process of gonad development in zebrafish.

Keywords: inulin, zebrafish, reproduction, histology

Procedia PDF Downloads 284
6598 Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology

Authors: F. Rahmani, F. Razaghian, A. R. Kashaninia

Abstract:

This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ~72% PAE and output power of > 39 dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5 GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The load- and source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal.

Keywords: power amplifier (PA), high power, class-J and class-E, high efficiency

Procedia PDF Downloads 463
6597 Potential Impacts of Maternal Nutrition and Selection for Residual Feed Intake on Metabolism and Fertility Parameters in Angus Bulls

Authors: Aidin Foroutan, David S. Wishart, Leluo L. Guan, Carolyn Fitzsimmons

Abstract:

Maximizing efficiency and growth potential of beef cattle requires not only genetic selection (i.e. residual feed intake (RFI)) but also adequate nutrition throughout all stages of growth and development. Nutrient restriction during gestation has been shown to negatively affect post-natal growth and development as well as fertility of the offspring. This, when combined with RFI may affect progeny traits. This study aims to investigate the impact of selection for divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation, on bull calf traits such as fertility and muscle development using multiple ‘omics’ approaches. Comparisons were made between High-diet vs. Low-diet and between High-RFI vs. Low-RFI animals. An epigenetics experiment on semen samples identified 891 biomarkers associated with growth and development. A gene expression study on Longissimus thoracis muscle, semimembranosus muscle, liver, and testis identified 4 genes associated with muscle development and immunity of which Myocyte enhancer factor 2A [MEF2A; induces myogenesis and control muscle differentiation] was the only differentially expressed gene identified in all four tissues. An initial metabolomics experiment on serum samples using nuclear magnetic resonance (NMR) identified 4 metabolite biomarkers related to energy and protein metabolism. Once all the biomarkers are identified, bioinformatics approaches will be used to create a database covering all the ‘omics’ data collected from this project. This database will be broadened by adding other information obtained from relevant literature reviews. Association analyses with these data sets will be performed to reveal key biological pathways affected by RFI and maternal nutrition. Through these association studies between the genome and metabolome, it is expected that candidate biomarker genes and metabolites for feed efficiency, fertility, and/or muscle development are identified. If these gene/metabolite biomarkers are validated in a larger animal population, they could potentially be used in breeding programs to select superior animals. It is also expected that this work will lead to the development of an online tool that could be used to predict future traits of interest in an animal given its measurable ‘omics’ traits.

Keywords: biomarker, maternal nutrition, omics, residual feed intake

Procedia PDF Downloads 168
6596 Bioarm, a Prothesis without Surgery

Authors: J. Sagouis, A. Chamel, E. Carre, C. Casasreales, G. Rudnik, M. Cerdan

Abstract:

Robotics provides answers to amputees. The most expensive solutions surgically connect the prosthesis to nerve endings. There are also several types of non-invasive technologies that recover nerve messages passing through the muscles. After analyzing these messages, myoelectric prostheses perform the desired movement. The main goal is to avoid all surgeries, which can be heavy and offer cheaper alternatives. For an amputee, we use valid muscles to recover the electrical signal involved in a muscle movement. EMG sensors placed on the muscle allows us to measure a potential difference, which our program transforms into control for a robotic arm with two degrees of freedom. We have shown the feasibility of non-invasive prostheses with two degrees of freedom. Signal analysis and an increase in degrees of freedom is still being improved.

Keywords: prosthesis, electromyography (EMG), robotic arm, nerve message

Procedia PDF Downloads 232
6595 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 124
6594 Comparative Study on Soil Tillage Using Rotary Tiller and Power Harrow

Authors: Watcharachan Sukcharoenvipharat, Prathuang Usaborisut, Sirisak Choedkiatphon

Abstract:

Farmers try to reduce steps of soil preparation by using subsoiler and then following by equipment for soil pulverization such as a rotary tiller and a power harrow which take advantage of using a power take-off of a tractor. Therefore, this study was conducted to compare the tilling performances of a rotary tiller and a power harrow applying after subsoiling. The results showed that both the rotary tiller and the power harrow had negative slip, indicating that they generated force to push a tractor. The rotary tiller created negative vertical force to lift up the tractor whereas opposite result was found when using the power harrow. Since working depths were different, vertical forces, torques and PTO powers for two equipment types were significantly different. However, no significant differences were found for the forward speeds, slips, drawbar pulls and drawbar powers. Comparative analysis showed that two equipment types had significant difference in PTO power to working depth, drawbar power to working depth, PTO power to working area, drawbar power to working area and soil pulverization.

Keywords: Rotary Tiller, Power Harrow, Drawbar Pull, Drawbar Power, PTO Power

Procedia PDF Downloads 276
6593 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values

Procedia PDF Downloads 565
6592 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence

Authors: Brahim Berbaoui

Abstract:

In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization

Procedia PDF Downloads 587
6591 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 89
6590 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction

Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi

Abstract:

High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.

Keywords: DOMS, sTnI, rapid detection test, ELISA

Procedia PDF Downloads 491
6589 Assessment of the Impact of the Application of Kinesiology Taping on Joint Position Sense in Knee Joint

Authors: Anna Słupik, Patryk Wąsowski, Anna Mosiołek, Dariusz Białoszewski

Abstract:

Introduction: Kinesiology Taping is one of the most popular techniques used for treatment and supporting physiological processes in sports medicine and physiotherapy. Often it is used to sensorimotor skills of lower limbs by athletes. The aim of the study was to determine the effect of the application of muscle Kinesiology Taping to feel the position setting in motion the joint active. Material and methods: The study involved 50 healthy people between 18 and 30 years of age, 30 men and 20 women (mean age 23.24 years). The participants were divided into two groups. The study group was qualified for Kinesiology Taping application (muscle application, type Y, for quadriceps femoris muscle), while the remaining people used the application made of plaster (placebo group). Testing was performed prior to applying taping, with the applied application (after 30 minutes), then 24 hours after wearing, and after removing the tape. Each evaluated joint position sense - Error of Active Reproduction of Joint Position. Results: The survey revealed no significant differences in measurement between the study group and the placebo group (p> 0.05). No significant differences in time taking into account all four measurements in the group with the applied CT application, which was supported by pairs (p> 0.05). Also in the placebo group showed no significant differences over time (p> 0.05). There was no significant difference between the errors committed in the direction of flexion and extension. Conclusions: 1. Application muscle Kinesiology Taping had no significant effect on the knee joint proprioception. Its use in order to improve sensorimotor seems therefore unjustified. 2. There are no differences between applications Kinesiology Taping and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous and study group.

Keywords: joint position sense, kinesiology taping, knee joint, proprioception

Procedia PDF Downloads 373
6588 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 51
6587 Temporal Profile of T2 MRI and 1H-MRS in the MDX Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K.Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscle wasting disease for which there are currently no treatment that effectively prevents the muscle necrosis and progressive muscle loss. DMD is among the most common of inherited diseases affecting around 1/3500 live male births. MDX (X-linked muscular dystrophy) mice only partially encapsulate the disease in humans and display weakness in muscles, muscle damage and edema during a period deemed the “critical period” when these mice go through cycles of muscular degeneration and regeneration. Although the MDX mutant mouse model has been extensively studied as a model for DMD, to-date an extensive temporal, non-invasive imaging profile that utilizes magnetic resonance imaging (MRI) and 1H-magnetic resonance spectroscopy (1H-MRS) has not been performed.. In addition, longitudinal imaging characterization has not coincided with attempts to exacerbate the progressive muscle damage by exercise. In this study we employed an 11.7 T small animal MRI in order to characterize the MRI and MRS profile of MDX mice longitudinally during a 12 month period during which MDX mice were subjected to exercise. Male mutant MDX mice (n=15) and male wild-type mice (n=15) were subjected to a chronic exercise regime of treadmill walking (30 min/ session) bi-weekly over the whole 12 month follow-up period. Mouse gastrocnemius and tibialis anterior muscles were profiled with baseline T2-MRI and 1H-MRS at 6 weeks of age. Imaging and spectroscopy was repeated again at 3 months, 6 months, 9 months and 12 months of age. Plasma creatine kinase (CK) level measurements were coincided with time-points for T2-MRI and 1H-MRS, but also after the “critical period” at 10 weeks of age. The results obtained from this study indicate that chronic exercise extends dystrophic phenotype of MDX mice as evidenced by T2-MRI and1H-MRS. T2-MRI revealed extent and location of the muscle damage in gastrocnemius and tibialis anterior muscles as hyperintensities (lesions and edema) in exercised MDX mice over follow-up period.. The magnitude of the muscle damage remained stable over time in exercised mice. No evident fat infiltration or cumulation to the muscle tissues was seen at any time-point in exercised MDX mice. Creatine, choline and taurine levels evaluated by 1H-MRS from the same muscles were found significantly decreased in each time-point, Extramyocellular (EMCL) and intramyocellular lipids (IMCL) did not change in exercised mice supporting the findings from anatomical T2-MRI scans for fat content. Creatine kinase levels were found to be significantly higher in exercised MDX mice during the follow-up period and importantly CK levels remained stable over the whole follow-up period. Taken together, we have described here longitudinal prophile for muscle damage and muscle metabolic changes in MDX mice subjected to chronic exercised. The extent of the muscle damage by T2-MRI was found to be stable through the follow-up period in muscles examined. In addition, metabolic profile, especially creatine, choline and taurine levels in muscles, was found to be sustained between time-points. The anatomical muscle damage evaluated by T2-MRI was supported by plasma CK levels which remained stable over the follow-up period. These findings show that non-invasive imaging and spectroscopy can be used effectively to evaluate chronic muscle pathology. These techniques can be also used to evaluate the effect of various manipulations, like here exercise, on the phenotype of the mice. Many of the findings we present here are translatable to clinical disease, such as decreased creatine, choline and taurine levels in muscles. Imaging by T2-MRI and 1H-MRS also revealed that fat content or extramyocellar and intramyocellular lipids, respectively, are not changed in MDX mice, which is in contrast to clinical manifestation of the Duchenne’s muscle dystrophy. Findings show that non-invasive imaging can be used to characterize the phenotype of a MDX model and its translatability to clinical disease, and to study events that have traditionally been not examined, like here rigorous exercise related sustained muscle damage after the “critical period”. The ability for this model to display sustained damage beyond the spontaneous “critical period“ and in turn to study drug effects on this extended phenotype will increase the value of the MDX mouse model as a tool to study therapies and treatments aimed at DMD and associated diseases.

Keywords: 1H-MRS, MRI, muscular dystrophy, mouse model

Procedia PDF Downloads 333
6586 Dynamic Voltage Restorer Control Strategies: An Overview

Authors: Arvind Dhingra, Ashwani Kumar Sharma

Abstract:

Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.

Keywords: DVR, power quality, harmonics, harmonic mitigation

Procedia PDF Downloads 351
6585 Reliability and Validity of Determining Ventilatory Threshold and Respiratory Compensation Point by Near-Infrared Spectroscopy

Authors: Tso-Yen Mao, De-Yen Liu, Chun-Feng Huang

Abstract:

Purpose: This research intends to investigate the reliability and validity of ventilatory threshold (VT) and respiratory compensation point (RCP) determined by skeletal muscle hemodynamic status. Methods: One hundred healthy male (age: 22±3 yrs; height: 173.1±6.0 cm; weight: 67.1±10.5 kg) performed graded cycling exercise test which ventilatory and skeletal muscle hemodynamic data were collected simultaneously. VT and RCP were determined by combined V-slope (VE vs. VCO2) and ventilatory efficiency (VE/VO2 vs. VE/VCO2) methods. Pearson correlation, paired t-test, and Bland-Altman plots were used to analyze reliability, validity, and similarities. Statistical significance was set at α =. 05. Results: There are high test-retest correlations of VT and RCP in ventilatory or near-infrared spectroscopy (NIRS) methods (VT vs. VTNIRS: 0.95 vs. 0.94; RCP vs. RCPNIRS: 0.93 vs. 0.93, p<. 05). There are high coefficient of determination at the first timing point of O2Hb decreased (R2 = 0.88, p<. 05) with VT, and high coefficient of determination at the second timing point of O2Hb declined (R2 = 0.89, p< .05) with RCP. VO2 of VT and RCP are not significantly different between ventilatory and NIRS methods (p>. 05). Conclusion: Using NIRS method to determine VT and RCP is reliable and valid in male individuals during graded exercise. Non-invasive skeletal muscle hemodynamics monitor also can be used for controlling training intensity in the future.

Keywords: anaerobic threshold, exercise intensity, hemodynamic, NIRS

Procedia PDF Downloads 290
6584 Power Quality Issues: Power Supply Interruptions as Key Constraint to Development in Ekiti State, Nigeria

Authors: Oluwatosin S. Adeoye

Abstract:

The power quality issues in the world today are critical to the development of different nations. Prosperity of each nation depends on availability of constant power supply. Constant power supply is a major challenge in Africa particularly in Nigeria where the generated power is than thirty percent of the required power. The metrics of power quality are voltage dip, flickers, spikes, harmonics and interruptions. The level of interruptions in Ekiti State was examined through the investigation of the causes of power interruptions in the State. The method used was the collection of data from the Distribution Company, assessment through simple programming as a command for plotting the graphs through the use of MATLAB 2015 depicting the behavioural pattern of the interruption for a period of six months in 2016. The result shows that the interrelationship between the interruptions and development. Recommendations were suggested with the objective of solving the problems being set up by interruptions in the State and these include installation of reactors, automatic voltage regulators and effective tap changing system on the lines, busses and transformer substation respectively.

Keywords: development, frequency, interruption, power, quality

Procedia PDF Downloads 139
6583 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 40
6582 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya

Procedia PDF Downloads 447
6581 A Multi Function Myocontroller for Upper Limb Prostheses

Authors: Ayad Asaad Ibrahim

Abstract:

Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.

Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller

Procedia PDF Downloads 340
6580 Role of Power Electronics in Grid Integration of Renewable Energy Systems

Authors: M. N. Tandjaoui, C. Banoudjafar, C. Benachaiba, O. Abdelkhalek, A. Kechich

Abstract:

Advanced power electronic systems are deemed to be an integral part of renewable, green, and efficient energy systems. Wind energy is one of the renewable means of electricity generation that is now the world’s fastest growing energy source can bring new challenges when it is connected to the power grid due to the fluctuation nature of the wind and the comparatively new types of its generators. The wind energy is part of the worldwide discussion on the future of energy generation and use and consequent effects on the environment. However, this paper will introduce some of the requirements and aspects of the power electronic involved with modern wind generation systems, including modern power electronics and converters, and the issues of integrating wind turbines into power systems.

Keywords: power electronics, renewable energy, smart grid, green energy, power technology

Procedia PDF Downloads 626
6579 Global Voltage Harmonic Index for Measuring Harmonic Situation of Power Grids: A Focus on Power Transformers

Authors: Alireza Zabihi, Saeed Peyghami, Hossein Mokhtari

Abstract:

With the increasing deployment of renewable power plants, such as solar and wind, it is crucial to measure the harmonic situation of the grid. This paper proposes a global voltage harmonic index to measure the harmonic situation of the power grid with a focus on power transformers. The power electronics systems used to connect these plants to the network can introduce harmonics, leading to increased losses, reduced efficiency, false operation of protective relays, and equipment damage due to harmonic intensifications. The proposed index considers the losses caused by harmonics in power transformers which are of great importance and value to the network, providing a comprehensive measure of the harmonic situation of the grid. The effectiveness of the proposed index is evaluated on a real-world distribution network, and the results demonstrate its ability to identify the harmonic situation of the network, particularly in relation to power transformers. The proposed index provides a comprehensive measure of the harmonic situation of the grid, taking into account the losses caused by harmonics in power transformers. The proposed index has the potential to support power companies in optimizing their power systems and to guide researchers in developing effective mitigation strategies for harmonics in the power grid.

Keywords: global voltage harmonic index, harmonics, power grid, power quality, power transformers, renewable energy

Procedia PDF Downloads 95
6578 Capacitive Coupling Wireless Power Transfer System with 6.78 MHz Class D Inverter

Authors: Kang Hyun Yi

Abstract:

Wireless power transfer technologies are inductive coupling, magnetic resonance, and capacitive coupling methods, typically. Among them, the capacitive coupling wireless power transfer, also named Capacitive Coupling Wireless Power Transfer (CCWPT), has been researched to overcome the drawbacks of other approaches. The CCWPT has many advantages such as a simple structure, low standing power loss, reduced Electromagnetic Interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system is consisted of the 6.78MHz class D inverter with the LC low pass filter, the capacitor between a transmitter and a receiver and impedance transformers. The system is verified with a prototype for charging mobile devices.

Keywords: wireless power transfer, capacitive coupling power transfer, class D inverter, 6.78MHz

Procedia PDF Downloads 625
6577 Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network

Authors: Ferydon Salehifar, Hassan Safarikia, Hossein Boromandfar

Abstract:

Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined.

Keywords: Karkheh power, frequency control system, active power, efficiency

Procedia PDF Downloads 595
6576 Nuclear Power Plant Radioactive Effluent Discharge Management in China

Authors: Jie Yang, Qifu Cheng, Yafang Liu, Zhijie Gu

Abstract:

Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values.

Keywords: radioactive effluent, HWR, PWR, nuclear power plant

Procedia PDF Downloads 220
6575 The Effect of Resistance and Progressive Training on Hsp 70 and Glucose

Authors: F. Nameni, H. Poursadra

Abstract:

The present study investigated resistance and progressive training alters the expression of chaperone proteins. These proteins function to maintain homeostasis, facilitate repair from injury, and provide protection. Nineteen training female in 2 groups taking part in the intervention volunteered to give blood samples. Levels of chaperone proteins were measured in response to resistance and progressive training. Hsp 70 levels were increased immediately after 2 h progressive training but decreased after resistance training. The data showed that human skeletal muscle responds to the stress of a single period of progressive training by up-regulating and resistance training by down-regulating expression of HSP70. Physical exercise can elevate core temperature and muscle temperatures and the expression pattern of HSP70 due to training status may be attributed to adaptive mechanisms.

Keywords: resistance training, heat shock proteins, leukocytes, Hsp 70

Procedia PDF Downloads 431
6574 A Novel Design of a Low Cost Wideband Wilkinson Power Divider

Authors: A. Sardi, J. Zbitou, A. Errkik, L. El Abdellaoui, A. Tajmouati, M. Latrach

Abstract:

This paper presents analysis and design of a wideband Wilkinson power divider for wireless applications. The design is accomplished by transforming the lengths and impedances of the quarter wavelength sections of the conventional Wilkinson power divider into U-shaped sections. The designed power divider is simulated by using ADS Agilent technologies and CST microwave studio software. It is shown that the proposed power divider has simple topology and good performances in terms of insertion loss, port matching and isolation at all operating frequencies (1.8 GHz, 2.45 GHz and 3.55 GHz).

Keywords: ADS agilent technologies, CST microwave studio, microstrip, wideband, wilkinson power divider

Procedia PDF Downloads 343
6573 Toward a Characteristic Optimal Power Flow Model for Temporal Constraints

Authors: Zongjie Wang, Zhizhong Guo

Abstract:

While the regular optimal power flow model focuses on a single time scan, the optimization of power systems is typically intended for a time duration with respect to a desired objective function. In this paper, a temporal optimal power flow model for a time period is proposed. To reduce the computation burden needed for calculating temporal optimal power flow, a characteristic optimal power flow model is proposed, which employs different characteristic load patterns to represent the objective function and security constraints. A numerical method based on the interior point method is also proposed for solving the characteristic optimal power flow model. Both the temporal optimal power flow model and characteristic optimal power flow model can improve the systems’ desired objective function for the entire time period. Numerical studies are conducted on the IEEE 14 and 118-bus test systems to demonstrate the effectiveness of the proposed characteristic optimal power flow model.

Keywords: optimal power flow, time period, security, economy

Procedia PDF Downloads 425
6572 Effect of Ambient Oxygen Content and Lifting Frequency on the Participant’s Lifting Capabilities, Muscle Activities, and Perceived Exertion

Authors: Atef M. Ghaleb, Mohamed Z. Ramadan, Khalid Saad Aljaloud

Abstract:

The aim of this study is to assesses the lifting capabilities of persons experiencing hypoxia. It also examines the behavior of the physiological response induced through the lifting process related to changing in the hypoxia and lifting frequency variables. For this purpose, the study performed two consecutive tests by using; (1) training and acclimatization; and (2) an actual collection of data. A total of 10 male students from King Saud University, Kingdom of Saudi Arabia, were recruited in the study. A two-way repeated measures design, with two independent variables (ambient oxygen (15%, 18% and 21%)) and lifting frequency (1 lift/min and 4 lifts/min) and four dependent variables i.e., maximum acceptable weight of lift (MAWL), Electromyography (EMG) of four muscle groups (anterior deltoid, trapezius, biceps brachii, and erector spinae), rating of perceived exertion (RPE), and rating of oxygen feeling (ROF) were used in this study. The results show that lifting frequency has significantly impacted the MAWL and muscles’ activities. The oxygen content had a significant effect on the RPE and ROE. The study has revealed that acclimatization and training sessions significantly reduce the effect of the hypoxia on the human physiological parameters during the manual materials handling tasks.

Keywords: lifting capabilities, muscle activities, oxygen content, perceived exertion

Procedia PDF Downloads 114