Search results for: multimodal fusion classifier
862 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 525861 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 217860 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects
Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta
Abstract:
Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus
Procedia PDF Downloads 254859 A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing
Authors: Ali Alhajeri, Tarig Makki, Mosa Almutahhar, Mohammed Ahmed, Usman Ali
Abstract:
Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts.Keywords: LPBF, titanium, Ti-6Al-4V, Ti-5553, metal powder, AM
Procedia PDF Downloads 176858 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 469857 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 362856 Intermetallic Phases in the Fusion Weld of CP Ti to Stainless Steel
Authors: Juzar Vohra, Ravish Malhotra, Tim Pasang, Mana Azizi, Yuan Tao, Masami Mizutani
Abstract:
In this paper, dissimilar welding of titanium to stainless steels is reported. Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW) were employed to join CPTi to SS304. The welds were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). FeTi, Ti2Cr and Fe2Ti dendrites are formed along with beta phase titanium matrix. The hardness values of these phases are high which makes them brittle and leading to cracking along the weld pool. However, it is believed that cracking, hence, fracturing of this weld joint is largely due to the difference in thermal properties of the two alloys.Keywords: dissimilar metals, fusion welding, intermetallics, brittle
Procedia PDF Downloads 496855 Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe
Authors: Babatunde Olumide Olawale, Oyebode Olumide Oyediran
Abstract:
The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe.Keywords: access control, multimodal biometrics, pattern recognition, security safe
Procedia PDF Downloads 337854 An Integrated 5G, Geomagnetic, and Inertial Measurement Unit Fusion Approach for Indoor Positioning
Authors: Chen Zhang, Wei He, Yue Jin, Zengshan Tian, Kaikai Liu
Abstract:
With the widespread adoption of the Internet of Things and smart devices, the demand for indoor positioning technology with high accuracy and robustness continues to grow. Traditional positioning methods such as fingerprinting, channel parameter estimation techniques (TDoA, AoA), and Pedestrian Dead Reckoning (PDR) each have their limitations. Fingerprinting is highly sensitive to environmental changes, channel parameter estimation is only effective in line-of-sight conditions, and PDR is prone to sensor errors and magnetic interference. To overcome these limitations, multisensor fusion-based positioning methods have become a mainstream solution. This paper proposes a dynamic positioning system that integrates 5G TDoA, geomagnetic fingerprinting, and PDR. The system uses 5G TDoA for high-precision starting point positioning, corrects PDR heading with geomagnetic declination, and refines PDR positioning accuracy using geomagnetic fingerprints. Experimental results demonstrate that this method improves positioning accuracy and stability in complex indoor environments, overcoming the limitations of traditional methods and providing a reliable indoor positioning solution.Keywords: 5G TDoA, magnetic fields, pedestrian dead reckoning, fusion location
Procedia PDF Downloads 3853 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 418852 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases
Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher
Abstract:
Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases
Procedia PDF Downloads 242851 Multimodal Database of Emotional Speech, Video and Gestures
Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Abstract:
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech
Procedia PDF Downloads 349850 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing
Procedia PDF Downloads 164849 The Effect of an Occupational Therapy Programme on Sewing Machine Operators
Authors: N. Dunleavy, E. Lovemore, K. Siljeur, D. Jackson, M. Hendricks, M. Hoosain, N. Plastow, S. Marais
Abstract:
Background: The work requirements of sewing machine operators cause physical and emotional strain. Past ergonomic interventions have been provided to alleviate physical concerns; however, a holistic, multimodal intervention was needed to improve these factors. Aim: The study aimed to examine the effect of an occupational therapy programme on sewing machine operators’ pain, mental health, and productivity within a factory in the South African context. Methods: A pilot randomised control trial was conducted with 22 sewing machine operators within a single factory. Stratified randomisation was used to determine the experimental (EG) and control groups (CG), using measures for pain intensity, level of depression (mental health), and productivity rates as stratification variables. The EG received the multimodal intervention, incorporating education, seating adaptations, and mental health intervention. In three months, the CG will receive the same intervention. Pre- and post-intervention testing have occurred with upcoming three- and six-month follow-ups. Results: Immediate results indicate a statistically significant decrease in pain in both experimental and control groups; no change in productivity scores and depression between the two groups. This may be attributed to external factors. The values for depression further showed no statistical significance between the two groups and within pre-and post-test results. The Statistical Program for Social Sciences (SPSS) version-24 was used as the data analysis testing, where all the tests will be evaluated at a 5% significance level. Contribution of research: The research adds to the body of knowledge informing the Occupational Therapy role in work settings, providing evidence on the effectiveness of workplace-based multimodal interventions. Conclusion: The study provides initial data on the effectiveness of a pilot randomised control trial on pain and mental health in South Africa. Results indicated no quantitative change between the experimental and control groups; however, qualitative data suggest a clinical significance of the findings.Keywords: ergonomics programme, occupational therapy, sewing machine operators, workplace-based multimodal interventions
Procedia PDF Downloads 86848 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 134847 The Use of Videoconferencing in a Task-Based Beginners' Chinese Class
Authors: Sijia Guo
Abstract:
The development of new technologies and the falling cost of high-speed Internet access have made it easier for institutes and language teachers to opt different ways to communicate with students at distance. The emergence of web-conferencing applications, which integrate text, chat, audio / video and graphic facilities, offers great opportunities for language learning to through the multimodal environment. This paper reports on data elicited from a Ph.D. study of using web-conferencing in the teaching of first-year Chinese class in order to promote learners’ collaborative learning. Firstly, a comparison of four desktop videoconferencing (DVC) tools was conducted to determine the pedagogical value of the videoconferencing tool-Blackboard Collaborate. Secondly, the evaluation of 14 campus-based Chinese learners who conducted five one-hour online sessions via the multimodal environment reveals the users’ choice of modes and their learning preference. The findings show that the tasks designed for the web-conferencing environment contributed to the learners’ collaborative learning and second language acquisition.Keywords: computer-mediated communication (CMC), CALL evaluation, TBLT, web-conferencing, online Chinese teaching
Procedia PDF Downloads 310846 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images
Authors: Mekha Mathew, Varun P Gopi
Abstract:
Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform
Procedia PDF Downloads 487845 Ascribing Identities and Othering: A Multimodal Discourse Analysis of a BBC Documentary on YouTube
Authors: Shomaila Sadaf, Margarethe Olbertz-Siitonen
Abstract:
This study looks at identity and othering in discourses around sensitive issues in social media. More specifically, the study explores the multimodal resources and narratives through which the other is formed, and identities are ascribed in online spaces. As an integral part of social life, media spaces have become an important site for negotiating and ascribing identities. In line with recent research, identity is seen hereas constructions of belonging which go hand in hand with processes of in- and out-group formations that in some cases may lead to othering. Previous findings underline that identities are neither fixed nor limited but rather contextual, intersectional, and interactively achieved. The goal of this study is to explore and develop an understanding of how people co-construct the ‘other’ and ascribe certain identities in social media using multiple modes. In the beginning of the year 2018, the British government decided to include relationships, sexual orientation, and sex education into the curriculum of state funded primary schools. However, the addition of information related to LGBTQ+in the curriculum has been met with resistance, particularly from religious parents.For example, the British Muslim community has voiced their concerns and protested against the actions taken by the British government. YouTube has been used by news companies to air video stories covering the protest and narratives of the protestors along with the position ofschool officials. The analysis centers on a YouTube video dealing with the protest ofa local group of parents against the addition of information about LGBTQ+ in the curriculum in the UK. The video was posted in 2019. By the time of this study, the videos had approximately 169,000 views andaround 6000 comments. In deference to multimodal nature of YouTube videos, this study utilizes multimodal discourse analysis as a method of choice. The study is still ongoing and therefore has not yet yielded any final results. However, the initial analysis indicates a hierarchy of ascribing identities in the data. Drawing on multimodal resources, the media works with social categorizations throughout the documentary, presenting and classifying involved conflicting parties in the light of their own visible and audible identifications. The protesters can be seen to construct a strong group identity as Muslim parents (e.g., clothing and reference to shared values). While the video appears to be designed as a documentary that puts forward facts, the media does not seem to succeed in taking a neutral position consistently throughout the video. At times, the use of images, soundsand language contributes to the formation of “us” vs. “them”, where the audience is implicitly encouraged to pick a side. Only towards the end of the documentary this problematic opposition is addressed and critically reflected through an expert interview that is – interestingly – visually located outside the previously presented ‘battlefield’. This study contributes to the growing understanding of the discursive construction of the ‘other’ in social media. Videos available online are a rich source for examining how the different social actors ascribe multiple identities and form the other.Keywords: identity, multimodal discourse analysis, othering, youtube
Procedia PDF Downloads 115844 Sensor Registration in Multi-Static Sonar Fusion Detection
Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin
Abstract:
In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem
Procedia PDF Downloads 169843 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 95842 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components
Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar
Abstract:
Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum
Procedia PDF Downloads 131841 Friction Stir Welding of Aluminum Alloys: A Review
Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra
Abstract:
Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.Keywords: aluminum alloys, friction stir welding (FSW), microstructure, Properties.
Procedia PDF Downloads 419840 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 313839 Classification of Multiple Cancer Types with Deep Convolutional Neural Network
Authors: Nan Deng, Zhenqiu Liu
Abstract:
Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern
Procedia PDF Downloads 301838 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 372837 Design and Development of Bar Graph Data Visualization in 2D and 3D Space Using Front-End Technologies
Authors: Sourabh Yaduvanshi, Varsha Namdeo, Namrata Yaduvanshi
Abstract:
This study delves into the design and development intricacies of crafting detailed 2D bar charts via d3.js, recognizing its limitations in generating 3D visuals within the Document Object Model (DOM). The study combines three.js with d3.js, facilitating a smooth evolution from 2D to immersive 3D representations. This fusion epitomizes the synergy between front-end technologies, expanding horizons in data visualization. Beyond technical expertise, it symbolizes a creative convergence, pushing boundaries in visual representation. The abstract illuminates methodologies, unraveling the intricate integration of this fusion and guiding enthusiasts. It narrates a compelling story of transcending 2D constraints, propelling data visualization into captivating three-dimensional realms, and igniting creativity in front-end visualization endeavors.Keywords: design, development, front-end technologies, visualization
Procedia PDF Downloads 40836 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier
Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat
Abstract:
Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier
Procedia PDF Downloads 352835 Assessing the Physical Conditions of Motorcycle Taxi Stands and Comfort Conditions of the Drivers in the Central Business District of Bangkok
Authors: Nissa Phloimontri
Abstract:
This research explores the current physical conditions of motorcycle taxi stands located near the BTS stations in the central business district (CBD) and the comfort conditions of motorcycle taxi drivers. The criteria set up for physical stand survey and assessment are the integration of multimodal access design guidelines. After the survey, stands that share similar characteristics are classified into a series of typologies. Based on the environmental comfort model, questionnaires and in-depth interviews are conducted to evaluate the comfort levels of drivers including physical, functional, and psychological comfort. The results indicate that there are a number of motorcycle taxi stands that are not up to standard and are not conducive to the work-related activities of drivers. The study concludes by recommending public policy for integrated paratransit stops that support the multimodal transportation and seamless mobility concepts within the specific context of Bangkok as well as promote the quality of work life of motorcycle taxi drivers.Keywords: motorcycle taxi, paratransit stops, environmental comfort, quality of work life
Procedia PDF Downloads 114834 A Multimodal Measurement Approach Using Narratives and Eye Tracking to Investigate Visual Behaviour in Perceiving Naturalistic and Urban Environments
Authors: Khizar Z. Choudhrya, Richard Coles, Salman Qureshi, Robert Ashford, Salim Khan, Rabia R. Mir
Abstract:
Abstract: The majority of existing landscape research has been derived by conducting heuristic evaluations, without having empirical insight of real participant visual response. In this research, a modern multimodal measurement approach (using narratives and eye tracking) was applied to investigate visual behaviour in perceiving naturalistic and urban environments. This research is unique in exploring gaze behaviour on environmental images possessing different levels of saliency. Eye behaviour is predominantly attracted by salient locations. The concept of methodology of this research on naturalistic and urban environments is drawn from the approaches in market research. Borrowing methodologies from market research that examine visual responses and qualities provided a critical and hitherto unexplored approach. This research has been conducted by using mixed methodological quantitative and qualitative approaches. On the whole, the results of this research corroborated existing landscape research findings, but they also identified potential refinements. The research contributes both methodologically and empirically to human-environment interaction (HEI). This study focused on initial impressions of environmental images with the help of eye tracking. Taking under consideration the importance of the image, this study explored the factors that influence initial fixations in relation to expectations and preferences. In terms of key findings of this research it is noticed that each participant has his own unique navigation style while surfing through different elements of landscape images. This individual navigation style is given the name of ‘visual signature’. This study adds the necessary clarity that would complete the picture and bring an insight for future landscape researchers.Keywords: human-environment interaction (HEI), multimodal measurement, narratives, eye tracking
Procedia PDF Downloads 339833 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier
Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral
Abstract:
With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.Keywords: audio classification, audio extraction, environment mobile, musical information retrieval
Procedia PDF Downloads 547