Search results for: methodical series
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2701

Search results for: methodical series

2521 Chaotic Analysis of Acid Rains with Times Series of pH Degree, Nitrate and Sulphate Concentration on Wet Samples

Authors: Aysegul Sener, Gonca Tuncel Memis, Mirac Kamislioglu

Abstract:

Chaos theory is one of the new paradigms of science since the last century. After determining chaos in the weather systems by Edward Lorenz the popularity of the theory was increased. Chaos is observed in many natural systems and studies continue to defect chaos to other natural systems. Acid rain is one of the environmental problems that have negative effects on environment and acid rains values are monitored continuously. In this study, we aim that analyze the chaotic behavior of acid rains in Turkey with the chaotic defecting approaches. The data of pH degree of rain waters, concentration of sulfate and nitrate data of wet rain water samples in the rain collecting stations which are located in different regions of Turkey are provided by Turkish State Meteorology Service. Lyapunov exponents, reconstruction of the phase space, power spectrums are used in this study to determine and predict the chaotic behaviors of acid rains. As a result of the analysis it is found that acid rain time series have positive Lyapunov exponents and wide power spectrums and chaotic behavior is observed in the acid rain time series.

Keywords: acid rains, chaos, chaotic analysis, Lypapunov exponents

Procedia PDF Downloads 146
2520 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments

Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro

Abstract:

Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.

Keywords: lean manufacturing, DOE, value stream mapping, textiles

Procedia PDF Downloads 455
2519 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes

Authors: Salim Belouettar, Kodjo Attipou

Abstract:

The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.

Keywords: wrinkling, thermal stresses, Fourier series, thin membranes

Procedia PDF Downloads 391
2518 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 345
2517 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 358
2516 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model

Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker

Abstract:

Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.

Keywords: air pollution, time series modeling, public health, road transport

Procedia PDF Downloads 142
2515 Moral Dilemmas, Difficulties in the Digital Games

Authors: YuPei Chang

Abstract:

In recent years, moral judgement tasks have served as an increasingly popular plot mechanism in digital gameplay. As a moral agency, the player's choice judgment in digital games is to shuttle between the real world and the game world. The purpose of the research is to explore the moral difficulties brewed by the interactive mechanism of the game and the moral choice of players. In the theoretical level, this research tries to combine moral disengagement, moral foundations theory, and gameplay as an aesthetic experience. And in the methodical level, this research tries to use methods that combine text analysis, diary method, and in-depth interviews. There are three research problems that will be solved in three stages. In the first stage, this project will explore how moral dilemmas are represented in game mechanics. In the second stage, this project will analyze the appearance and conflicts of moral dilemmas in game mechanics based on the five aspects of moral foundations theory. In the third stage, this project will try to understand the players' choices when they face the choices of moral dilemmas, as well as their explanations and reflections after making the decisions.

Keywords: morality, moral disengagement, moral foundations theory, PC game, gameplay, moral dilemmas, player

Procedia PDF Downloads 79
2514 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 358
2513 Influence of Water Reservoir Parameters on the Climate and Coastal Areas

Authors: Lia Matchavariani

Abstract:

Water reservoir construction on the rivers flowing into the sea complicates the coast protection, seashore starts to degrade causing coast erosion and disaster on the backdrop of current climate change. The instruments of the impact of a water reservoir on the climate and coastal areas are its contact surface with the atmosphere and the area irrigated with its water or humidified with infiltrated waters. The Black Sea coastline is characterized by the highest ecological vulnerability. The type and intensity of the water reservoir impact are determined by its morphometry, type of regulation, level regime, and geomorphological and geological characteristics of the adjoining area. Studies showed the impact of the water reservoir on the climate, on its comfort parameters is positive if it is located in the zone of insufficient humidity and vice versa, is negative if the water reservoir is found in the zone with abundant humidity. There are many natural and anthropogenic factors determining the peculiarities of the impact of the water reservoir on the climate, which can be assessed with maximum accuracy by the so-called “long series” method, which operates on the meteorological elements (temperature, wind, precipitations, etc.) with the long series formed with the stationary observation data. This is the time series, which consists of two periods with statistically sufficient duration. The first period covers the observations up to the formation of the water reservoir and another period covers the observations accomplished during its operation. If no such data are available, or their series is statistically short, “an analog” method is used. Such an analog water reservoir is selected based on the similarity of the environmental conditions. It must be located within the zone of the designed water reservoir, under similar environmental conditions, and besides, a sufficient number of observations accomplished in its coastal zone.

Keywords: coast-constituent sediment, eustasy, meteorological parameters, seashore degradation, water reservoirs impact

Procedia PDF Downloads 45
2512 The Underestimate of the Annual Maximum Rainfall Depths Due to Coarse Time Resolution Data

Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Tommaso Picciafuoco, Corrado Corradini

Abstract:

A considerable part of rainfall data to be used in the hydrological practice is available in aggregated form within constant time intervals. This can produce undesirable effects, like the underestimate of the annual maximum rainfall depth, Hd, associated with a given duration, d, that is the basic quantity in the development of rainfall depth-duration-frequency relationships and in determining if climate change is producing effects on extreme event intensities and frequencies. The errors in the evaluation of Hd from data characterized by a coarse temporal aggregation, ta, and a procedure to reduce the non-homogeneity of the Hd series are here investigated. Our results indicate that: 1) in the worst conditions, for d=ta, the estimation of a single Hd value can be affected by an underestimation error up to 50%, while the average underestimation error for a series with at least 15-20 Hd values, is less than or equal to 16.7%; 2) the underestimation error values follow an exponential probability density function; 3) each very long time series of Hd contains many underestimated values; 4) relationships between the non-dimensional ratio ta/d and the average underestimate of Hd, derived from continuous rainfall data observed in many stations of Central Italy, may overcome this issue; 5) these equations should allow to improve the Hd estimates and the associated depth-duration-frequency curves at least in areas with similar climatic conditions.

Keywords: central Italy, extreme events, rainfall data, underestimation errors

Procedia PDF Downloads 191
2511 Theory of Constraints: Approach for Performance Enhancement and Boosting Overhaul Activities

Authors: Sunil Dutta

Abstract:

Synchronization is defined as ‘the sequencing and re-sequencing of all relative and absolute activities in time and space and continuous alignment of those actions with purposeful objective in a complex and dynamic atmosphere. In a complex and dynamic production / maintenance setup, no single group can work in isolation for long. In addition, many activities in projects take place simultaneously at the same time. Work of every section / group is interwoven with work of others. The various activities / interactions which take place in production / overhaul workshops are interlinked because of physical requirements (information, material, workforces, equipment, and space) and dependencies. The activity sequencing is determined by physical dependencies of various department / sections / units (e.g., inventory availability must be ensured before stripping and disassembling of equipment), whereas resource dependencies do not. Theory of constraint facilitates identification, analyses and exploitation of the constraint in methodical manner. These constraints (equipment, manpower, policies etc.) prevent the department / sections / units from getting optimum exploitation of available resources. The significance of theory of constraints for achieving synchronization at overhaul workshop is illustrated in this paper.

Keywords: synchronization, overhaul, throughput, obsolescence, uncertainty

Procedia PDF Downloads 351
2510 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province

Authors: N. Sopipan

Abstract:

In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.

Keywords: ARIMA Models, exponential smoothing, Holt-Winter model

Procedia PDF Downloads 300
2509 Approximation of Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means of Fourier Series

Authors: Smita Sonker, Uaday Singh

Abstract:

Various investigators have determined the degree of approximation of functions belonging to the classes W(L r , ξ(t)), Lip(ξ(t), r), Lip(α, r), and Lipα using different summability methods with monotonocity conditions. Recently, Lal has determined the degree of approximation of the functions belonging to Lipα and W(L r , ξ(t)) classes by using Ces`aro-N¨orlund (C 1 .Np)- summability with non-increasing weights {pn}. In this paper, we shall determine the degree of approximation of 2π - periodic functions f belonging to the function classes Lipα and W(L r , ξ(t)) by C 1 .T - means of Fourier series of f. Our theorems generalize the results of Lal and we also improve these results in the light off. From our results, we also derive some corollaries.

Keywords: Lipschitz classes, product matrix operator, signals, trigonometric Fourier approximation

Procedia PDF Downloads 477
2508 Determining the Number of Single Models in a Combined Forecast

Authors: Serkan Aras, Emrah Gulay

Abstract:

Combining various forecasting models is an important tool for researchers to attain more accurate forecasts. A great number of papers have shown that selecting single models as dissimilar models, or methods based on different information as possible leads to better forecasting performances. However, there is not a certain rule regarding the number of single models to be used in any combining methods. This study focuses on determining the optimal or near optimal number for single models with the help of statistical tests. An extensive experiment is carried out by utilizing some well-known time series data sets from diverse fields. Furthermore, many rival forecasting methods and some of the commonly used combining methods are employed. The obtained results indicate that some statistically significant performance differences can be found regarding the number of the single models in the combining methods under investigation.

Keywords: combined forecast, forecasting, M-competition, time series

Procedia PDF Downloads 355
2507 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste

Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci

Abstract:

The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.

Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble

Procedia PDF Downloads 275
2506 Significance of Square Non-Spiral Microcoils for Biomedical Applications

Authors: Himanshu Chandrakar, Krishnapriya S., Rama Komaragiri, Suja K. J.

Abstract:

Micro coils are significant components for micro magnetic sensors and actuators especially in biomedical devices. Non-spiral planar microcoils of square, hexagonal and octagonal shapes are introduced for the first time in this paper. Comparison between different planar spiral and non-spiral coils are also discussed. The fabrication advantages and low power dissipation of non-spiral structures make them a strong alternative for conventional spiral planar coils. Series resistance of non-spiral coil is lesser than that of spiral coils though magnetic field is slightly lesser for non-spiral coils. Comparison of different planar microcoils shows that the proposed square non-spiral coil gives better performance than other structures.

Keywords: non-spiral planar microcoil, power dissipation, series resistance, spiral

Procedia PDF Downloads 168
2505 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations

Authors: Wieslaw Marszalek, Zdzislaw Trzaska

Abstract:

Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.

Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits

Procedia PDF Downloads 470
2504 Simulation of Photovoltaic Array for Specified Ratings of Converter

Authors: Smita Pareek, Ratna Dahiya

Abstract:

The power generated by solar photovoltaic (PV) module depends on surrounding irradiance, temperature, shading conditions, and shading pattern. This paper presents a simulation of photovoltaic module using Matlab/Simulink. PV Array is also simulated by series and parallel connections of modules and their characteristics curves are given. Further PV module topology/configuration are proposed for 5.5kW inverter available in the literature. Shading of a PV array either complete or partial can have a significant impact on its power output and energy yield; therefore, the simulated model characteristics curves (I-V and P-V) are drawn for uniform shading conditions (USC) and then output power, voltage and current are calculated for variation in insolation for shading conditions. Additionally the characteristics curves are also given for a predetermined shadowing condition.

Keywords: array, series, parallel, photovoltaic, partial shading

Procedia PDF Downloads 566
2503 Research of Interaction between Layers of Compressed Composite Columns

Authors: Daumantas Zidanavicius

Abstract:

In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.

Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution

Procedia PDF Downloads 124
2502 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
2501 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict

Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez

Abstract:

This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.

Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks

Procedia PDF Downloads 487
2500 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 301
2499 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 217
2498 Impact of the Simplification of Licensing Procedures for Industrial Complexes on Supply of Industrial Complexes and Regional Policies

Authors: Seung-Seok Bak, Chang-Mu Jung

Abstract:

An enough amount supply of industrial complexes is an important national policy in South Korea, which is highly dependent on foreign trade. A development process of the industrial complex can distinguish between the planning stage and the construction stage. The planning stage consists of the process of consulting with many stakeholders on the contents of the development of industrial complex, feasibility study, compliance with the Regional policies, and so on. The industrial complex planning stage, including licensing procedure, usually takes about three years in South Korea. The government determined that the appropriate supply of industrial complexes have been delayed, due to the long licensing period and drafted a law to shorten the license period in 2008. The law was expected to shorten the period of licensing, which was about three years, to six months. This paper attempts to show that the shortening of the licensing period does not positively affect the appropriate supply of industrial complexes. To do this, we used Interrupted Time Series Designs. As a result, it was found that the supply of industrial complexes was influenced more by other factors such as actual industrial complex demand of private sector and macro-level economic variables. In addition, the specific provisions of the law conflict with local policy and cause some problems such as damage to nature and agricultural land, traffic congestion.

Keywords: development of industrial complexes, industrial complexes, interrupted time series designs, simplification of licensing procedures for industrial complexes, time series regression

Procedia PDF Downloads 295
2497 Effect of Damper Combinations in Series or Parallel on Structural Response

Authors: Ajay Kumar Sinha, Sharad Singh, Anukriti Sinha

Abstract:

Passive energy dissipation method for earthquake protection of structures is undergoing developments for improved performance. Combined use of different types of damping mechanisms has shown positive results in the near past. Different supplemental damping methods like viscous damping, frictional damping and metallic damping are being combined together for optimum performance. The conventional method of connecting passive dampers to structures is a parallel connection between the damper unit and structural member. Researchers are investigating coupling effect of different types of dampers. The most popular choice among the research community is coupling of viscous dampers and frictional dampers. The series and parallel coupling of these damping units are being studied for relative performance of the coupled system on response control of structures against earthquake. In this paper an attempt has been made to couple Fluid Viscous Dampers and Frictional Dampers in series and parallel to form a single unit of damping system. The relative performance of the coupled units has been studied on three dimensional reinforced concrete framed structure. The current theories of structural dynamics in practice for viscous damping and frictional damping have been incorporated in this study. The time history analysis of the structural system with coupled damper units, uncoupled damper units as well as of structural system without any supplemental damping has been performed in this study. The investigations reported in this study show significant improved performance of coupled system. A higher natural frequency of the system outside the forcing frequency has been obtained for structural systems with coupled damper units as against the other cases. The structural response of the structure in terms of storey displacement and storey drift show significant improvement for the case with coupled damper units as against the cases with uncoupled units or without any supplemental damping. The results are promising in terms of improved response of the structure with coupled damper units. Further investigations in this regard for a comparative performance of the series and parallel coupled systems will be carried out to study the optimum behavior of these coupled systems for enhanced response control of structural systems.

Keywords: frictional damping, parallel coupling, response control, series coupling, supplemental damping, viscous damping

Procedia PDF Downloads 456
2496 Analyzing the Empirical Link between Islamic Finance and Growth of Real Output: A Time Series Application to Pakistan

Authors: Nazima Ellahi, Danish Ramzan

Abstract:

There is a growing trend among development economists regarding the importance of financial sector for economic development and growth activities. The development thus introduced, helps to promote welfare effects and poverty alleviation. This study is an attempt to find the nature of link between Islamic banking financing and development of output growth for Pakistan. Time series data set has been utilized for a time period ranging from 1990 to 2010. Following the Phillip Perron (PP) and Augmented Dicky Fuller (ADF) test of unit root this study applied Ordinary Least Squares (OLS) method of estimation and found encouraging results in favor of promoting the Islamic banking practices in Pakistan.

Keywords: Islamic finance, poverty alleviation, economic growth, finance, commerce

Procedia PDF Downloads 345
2495 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 385
2494 Prioritization in Modern Portfolio Management - An Action Design Research Approach to Method Development for Scaled Agility

Authors: Jan-Philipp Schiele, Karsten Schlinkmeier

Abstract:

Allocation of scarce resources is a core process of traditional project portfolio management. However, with the popularity of agile methodology, established concepts and methods of portfolio management are reaching their limits and need to be adapted. Consequently, the question arises of how the process of resource allocation can be managed appropriately in scaled agile environments. The prevailing framework SAFe offers Weightest Shortest Job First (WSJF) as a prioritization technique, butestablished companies are still looking for methodical adaptions to apply WSJF for prioritization in portfolios in a more goal-oriented way and aligned for their needs in practice. In this paper, the relevant problem of prioritization in portfolios is conceptualized from the perspective of coordination and related mechanisms to support resource allocation. Further, an Action Design Research (ADR) project with case studies in a finance company is outlined to develop a practically applicable yet scientifically sound prioritization method based on coordination theory. The ADR project will be flanked by consortium research with various practitioners from the financial and insurance industry. Preliminary design requirements indicate that the use of a feedback loop leads to better team and executive level coordination in the prioritization process.

Keywords: scaled agility, portfolio management, prioritization, business-IT alignment

Procedia PDF Downloads 196
2493 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: climbing stairs, FSBLC, ILC, service robot

Procedia PDF Downloads 313
2492 Improving the Performance of Requisition Document Online System for Royal Thai Army by Using Time Series Model

Authors: D. Prangchumpol

Abstract:

This research presents a forecasting method of requisition document demands for Military units by using Exponential Smoothing methods to analyze data. The data used in the forecast is an actual data requisition document of The Adjutant General Department. The results of the forecasting model to forecast the requisition of the document found that Holt–Winters’ trend and seasonality method of α=0.1, β=0, γ=0 is appropriate and matches for requisition of documents. In addition, the researcher has developed a requisition online system to improve the performance of requisition documents of The Adjutant General Department, and also ensuring that the operation can be checked.

Keywords: requisition, holt–winters, time series, royal thai army

Procedia PDF Downloads 308