Search results for: linear equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4857

Search results for: linear equations

4677 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids

Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao

Abstract:

An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.

Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.

Procedia PDF Downloads 148
4676 Importance of Mathematical Modeling in Teaching Mathematics

Authors: Selahattin Gultekin

Abstract:

Today, in engineering departments, mathematics courses such as calculus, linear algebra and differential equations are generally taught by mathematicians. Therefore, during mathematicians’ classroom teaching there are few or no applications of the concepts to real world problems at all. Most of the times, students do not know whether the concepts or rules taught in these courses will be used extensively in their majors or not. This situation holds true of for all engineering and science disciplines. The general trend toward these mathematic courses is not good. The real-life application of mathematics will be appreciated by students when mathematical modeling of real-world problems are tackled. So, students do not like abstract mathematics, rather they prefer a solid application of the concepts to our daily life problems. The author highly recommends that mathematical modeling is to be taught starting in high schools all over the world In this paper, some mathematical concepts such as limit, derivative, integral, Taylor Series, differential equations and mean-value-theorem are chosen and their applications with graphical representations to real problems are emphasized.

Keywords: applied mathematics, engineering mathematics, mathematical concepts, mathematical modeling

Procedia PDF Downloads 319
4675 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems

Authors: Adamu S. Salawu, Ibrahim O. Isah

Abstract:

Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.

Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation

Procedia PDF Downloads 122
4674 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 195
4673 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations

Authors: Chao-Qing Dai

Abstract:

In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.

Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation

Procedia PDF Downloads 668
4672 Entropy Analysis of a Thermo-Acoustic Stack

Authors: Ahmadali Shirazytabar, Hamidreza Namazi

Abstract:

The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation.

Keywords: thermo-acoustics, entropy, second law of thermodynamics, Rott’s linear thermo-acoustic approximation

Procedia PDF Downloads 403
4671 Penetration Depth Study of Linear Siloxanes through Human Skin

Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska

Abstract:

Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.

Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 401
4670 Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry

Authors: Zineddine Bouyahiaoui, Rabah Haoui

Abstract:

The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.

Keywords: blunt body, finite volume, hypersonic flow, viscous flow

Procedia PDF Downloads 234
4669 Time-Dependent Analysis of Composite Steel-Concrete Beams Subjected to Shrinkage

Authors: Rahal Nacer, Beghdad Houda, Tehami Mohamed, Souici Abdelaziz

Abstract:

Although the shrinkage of the concrete causes undesirable parasitic effects to the structure, it can then harm the resistance and the good appearance of the structure. Long term behaviourmodelling of steel-concrete composite beams requires the use of the time variable and the taking into account of all the sustained stress history of the concrete slab constituting the cross section. The work introduced in this article is a theoretical study of the behaviour of composite beams with respect to the phenomenon of concrete shrinkage. While using the theory of the linear viscoelasticity of the concrete, and on the basis of the rate of creep method, in proposing an analytical model, made up by a system of two linear differential equations, emphasizing the effects caused by shrinkage on the resistance of a steel-concrete composite beams. Results obtained from the application of the suggested model to a steel-concrete composite beam are satisfactory.

Keywords: composite beams, shrinkage, time, rate of creep method, viscoelasticity theory

Procedia PDF Downloads 528
4668 A Fundamental Functional Equation for Lie Algebras

Authors: Ih-Ching Hsu

Abstract:

Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?

Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions

Procedia PDF Downloads 223
4667 Study on The Pile Height Loss of Tunisian Handmade Carpets Under Dynamic Loading

Authors: Fatma Abidi, Taoufik Harizi, Slah Msahli, Faouzi Sakli

Abstract:

Nine different Tunisian handmade carpets were used for the investigation. The raw material of the carpet pile yarns was wool. The influence of the different structure parameters (linear density and pile height) on the carpet compression was investigated. Carpets were tested under dynamic loading in order to evaluate and observe the thickness loss and carpet behavior under dynamic loads. To determine the loss of pile height under dynamic loading, the pile height carpets were measured. The test method was treated according to the Tunisian standard NT 12.165 (corresponds to the standard ISO 2094). The pile height measurements are taken and recorded at intervals up to 1000 impacts (measures of this study were made after 50, 100, 200, 500, and 1000 impacts). The loss of pile height is calculated using the variation between the initial height and those measured after the number of reported impacts. The experimental results were statistically evaluated using Design Expert Analysis of Variance (ANOVA) software. As regards the deformation, results showed that both of the structure parameters of the pile yarn and the pile height have an influence. The carpet with the higher pile and the less linear density of pile yarn showed the worst performance. Results of a polynomial regression analysis are highlighted. There is a good correlation between the loss of pile height and the impacts number of dynamic loads. These equations are in good agreement with measured data. Because the prediction is reasonably accurate for all samples, these equations can also be taken into account when calculating the theoretical loss of pile height for the considered carpet samples. Statistical evaluations of the experimen¬tal data showed that the pile material and number of impacts have a significant effect on mean thickness and thickness loss variations.

Keywords: Tunisian handmade carpet, loss of pile height, dynamic loads, performance

Procedia PDF Downloads 321
4666 Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer

Authors: Hamidreza Heidari, Abdollah Malmir Nasab

Abstract:

In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%.

Keywords: flexible link, DLCC, active control vibration, assumed mode method

Procedia PDF Downloads 396
4665 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance.

Keywords: finite element method, Preissmann scheme, HEC-RAS, flood forecasting, Indus river

Procedia PDF Downloads 503
4664 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm

Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding

Abstract:

Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.

Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection

Procedia PDF Downloads 153
4663 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness

Procedia PDF Downloads 491
4662 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 221
4661 Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Authors: Mohammad Sahadet Hossain, Shamsil Arifeen, Mehrab Hossian Likhon

Abstract:

In this paper, we analyze a linear time invariant (LTI) descriptor system of large dimension. Since these systems are difficult to simulate, compute and store, we attempt to reduce this large system using Low Rank Cholesky Factorized Alternating Directions Implicit (LRCF-ADI) iteration followed by Square Root Balanced Truncation. LRCF-ADI solves the dual Lyapunov equations of the large system and gives low-rank Cholesky factors of the gramians as the solution. Using these cholesky factors, we compute the Hankel singular values via singular value decomposition. Later, implementing square root balanced truncation, the reduced system is obtained. The bode plots of original and lower order systems are used to show that the magnitude and phase responses are same for both the systems.

Keywords: low-rank cholesky factor alternating directions implicit iteration, LTI Descriptor system, Lyapunov equations, Square-root balanced truncation

Procedia PDF Downloads 418
4660 Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Chun-Wei Lin

Abstract:

This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application.

Keywords: contact stiffness, feeding stage, linear guides, modal characteristics, pre-load

Procedia PDF Downloads 430
4659 A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions

Authors: Xijun Yu, Zhenzhen Li, Zupeng Jia

Abstract:

This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.

Keywords: cell-centered Lagrangian scheme, compressible Euler equations, RKDG method

Procedia PDF Downloads 546
4658 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian

Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma

Abstract:

In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.

Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental

Procedia PDF Downloads 209
4657 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations

Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran

Abstract:

In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.

Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions

Procedia PDF Downloads 431
4656 Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations

Authors: Payel Das, Gnaneshwar Nelakanti

Abstract:

In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results.

Keywords: hammerstein integral equations, spectral method, discrete galerkin, numerical quadrature, superconvergence

Procedia PDF Downloads 469
4655 Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer

Authors: Norazuwin Najihah Mat Tahir, Fuziyah Ishak, Seripah Awang Kechil

Abstract:

The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field.

Keywords: convection, instability, magnetic field, nanofluid, power-law

Procedia PDF Downloads 268
4654 Numerical Study of Sloshing in a Flexible Tank

Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche

Abstract:

The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.

Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid

Procedia PDF Downloads 105
4653 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: Ogunrinde Roseline Bosede

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: differential equations, numerical, polynomial, initial value problem, differential equation

Procedia PDF Downloads 447
4652 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 459
4651 Periodicity of Solutions to Impulsive Equations

Authors: Jin Liang, James H. Liu, Ti-Jun Xiao

Abstract:

It is known that there exist many physical phenomena where abrupt or impulsive changes occur either in the system dynamics, for example, ad-hoc network, or in the input forces containing impacts, for example, the bombardment of space antenna by micrometeorites. There are many other examples such as ultra high-speed optical signals over communication networks, the collision of particles, inventory control, government decisions, interest changes, changes in stock price, etc. These are impulsive phenomena. Hence, as a combination of the traditional initial value problems and the short-term perturbations whose duration can be negligible in comparison with the duration of the process, the systems with impulsive conditions (i.e., impulsive systems) are more realistic models for describing the impulsive phenomenon. Such a situation is also suitable for the delay systems, which include some of the past states of the system. So far, there have been a lot of research results in the study of impulsive systems with delay both in finite and infinite dimensional spaces. In this paper, we investigate the periodicity of solutions to the nonautonomous impulsive evolution equations with infinite delay in Banach spaces, where the coefficient operators (possibly unbounded) in the linear part depend on the time, which are impulsive systems in infinite dimensional spaces and come from the optimal control theory. It was indicated that the study of periodic solutions for these impulsive evolution equations with infinite delay was challenging because the fixed point theorems requiring some compactness conditions are not applicable to them due to the impulsive condition and the infinite delay. We are happy to report that after detailed analysis, we are able to combine the techniques developed in our previous papers, and some new ideas in this paper, to attack these impulsive evolution equations and derive periodic solutions. More specifically, by virtue of the related transition operator family (evolution family), we present a Poincaré operator given by the nonautonomous impulsive evolution system with infinite delay, and then show that the operator is a condensing operator with respect to Kuratowski's measure of non-compactness in a phase space by using an Amann's lemma. Finally, we derive periodic solutions from bounded solutions in view of the Sadovskii fixed point theorem. We also present a relationship between the boundedness and the periodicity of the solutions of the nonautonomous impulsive evolution system. The new results obtained here extend some earlier results in this area for evolution equations without impulsive conditions or without infinite delay.

Keywords: impulsive, nonautonomous evolution equation, optimal control, periodic solution

Procedia PDF Downloads 252
4650 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 570
4649 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters

Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi

Abstract:

A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.

Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation

Procedia PDF Downloads 540
4648 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles

Authors: Ismail Rahama Adam Hamid

Abstract:

This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.

Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation

Procedia PDF Downloads 56