Search results for: linear density of reinforcement
7082 Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation
Authors: I. D. Laryushin, V. A. Kostin, A. A. Silaev, N. V. Vvedenskii
Abstract:
Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity.Keywords: broadband terahertz radiation, ionization, laser plasma, ultrashort two-color pulses
Procedia PDF Downloads 2117081 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.Keywords: reinforcement, silicon carbide, fly ash, red mud
Procedia PDF Downloads 1597080 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.Keywords: regression, piecewise, Bayesian, reversible Jump MCMC
Procedia PDF Downloads 5217079 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach
Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo
Abstract:
Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation
Procedia PDF Downloads 1887078 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty
Procedia PDF Downloads 1077077 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.Keywords: PEM electrolysis stack, current density, temperature, pressure
Procedia PDF Downloads 2037076 Airy Wave Packet for a Particle in a Time-Dependant Linear Potential
Authors: M. Berrehail, F. Benamira
Abstract:
We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its EigenfunctionKeywords: airy wave packet, ivariant, time-dependent linear potential, unitary transformation
Procedia PDF Downloads 4947075 Using Fly Ash as a Reinforcement to Increase Wear Resistance of Pure Magnesium
Authors: E. Karakulak, R. Yamanoğlu, M. Zeren
Abstract:
In the current study, fly ash obtained from a thermal power plant was used as reinforcement in pure magnesium. The composite materials with different fly ash contents were produced with powder metallurgical methods. Powder mixtures were sintered at 540oC under 30 MPa pressure for 15 minutes in a vacuum assisted hot press. Results showed that increasing ash content continuously increases hardness of the composite. On the other hand, minimum wear damage was obtained at 2 wt. % ash content. Addition of higher level of fly ash results with formation of cracks in the matrix and increases wear damage of the material.Keywords: Mg composite, fly ash, wear, powder metallurgy
Procedia PDF Downloads 3637074 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning
Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker
Abstract:
Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning
Procedia PDF Downloads 1487073 Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong
Authors: Yuan Zhang
Abstract:
Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.Keywords: evolution mechanism, high-density city, Hong Kong, urban form
Procedia PDF Downloads 4057072 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem
Authors: Sujeet Kumar Singh, Shiv Prasad Yadav
Abstract:
This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function
Procedia PDF Downloads 5687071 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode
Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen
Abstract:
High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.Keywords: supercapacitor, CuO, RGO, lithium
Procedia PDF Downloads 1817070 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures
Authors: Harshit Agrawal, Salman Muhammad
Abstract:
Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention
Procedia PDF Downloads 847069 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain
Authors: Tulin Coskun
Abstract:
We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems
Procedia PDF Downloads 3387068 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference
Procedia PDF Downloads 2447067 A Comparative Case Study on the Relationship between Solar Energy Potential and Block Typology and Density in Shanghai Context
Abstract:
This study explores the relationship between solar potential and block typology and density by analyzing sixteen existing typical street blocks with different topologies and densities in Shanghai, a representative high-density urban in China. Several indicators are proposed to quantify, and a methodology is conducted to evaluate and compare the solar potential both on façade and roof across various selected urban forms. 1) The importance of appropriate solar energy indicators and geometric parameters to be used in comparative studies, and 2) the relationship between urban typology, density, and solar performance are discussed. In this way, the results reveal the key design attributes contributing to increasing solar potential.Keywords: block typology, geometric parameters, high-density urban, solar potential
Procedia PDF Downloads 3377066 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction
Procedia PDF Downloads 997065 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 1107064 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1427063 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities
Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper
Abstract:
In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.Keywords: linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control
Procedia PDF Downloads 3957062 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 687061 Effects of Porosity Logs on Pore Connectivity and Volumetric Estimation
Authors: Segun S. Bodunde
Abstract:
In Bona Field, Niger Delta, two reservoirs across three wells were analyzed. The research aimed at determining the statistical dependence of permeability and oil volume in place on porosity logs. Of the three popular porosity logs, two were used; the sonic and density logs. The objectives of the research were to identify the porosity logs that vary more with location and direction, to visualize the depth trend of both logs and to determine the influence of these logs on pore connectivity determination and volumetric analysis. The focus was on density and sonic logs. It was observed that the sonic derived porosities were higher than the density derived porosities (in well two, across the two reservoir sands, sonic porosity averaged 30.8% while density derived porosity averaged 23.65%, and the same trend was observed in other wells.). The sonic logs were further observed to have lower co-efficient of variation when compared to the density logs (in sand A, well 2, sonic derived porosity had a co-efficient of variation of 12.15% compared to 22.52% from the density logs) indicating a lower tendency to vary with location and direction. The bulk density was observed to increase with depth while the transit time reduced with depth. It was also observed that for an 8.87% decrease in porosity, the pore connectivity was observed to decrease by about 38%.Keywords: pore connectivity, co-efficient of variation, density derived porosity, sonic derived porosity
Procedia PDF Downloads 1937060 Preventing the Drought of Lakes by Using Deep Reinforcement Learning in France
Authors: Farzaneh Sarbandi Farahani
Abstract:
Drought and decrease in the level of lakes in recent years due to global warming and excessive use of water resources feeding lakes are of great importance, and this research has provided a structure to investigate this issue. First, the information required for simulating lake drought is provided with strong references and necessary assumptions. Entity-Component-System (ECS) structure has been used for simulation, which can consider assumptions flexibly in simulation. Three major users (i.e., Industry, agriculture, and Domestic users) consume water from groundwater and surface water (i.e., streams, rivers and lakes). Lake Mead has been considered for simulation, and the information necessary to investigate its drought has also been provided. The results are presented in the form of a scenario-based design and optimal strategy selection. For optimal strategy selection, a deep reinforcement algorithm is developed to select the best set of strategies among all possible projects. These results can provide a better view of how to plan to prevent lake drought.Keywords: drought simulation, Mead lake, entity component system programming, deep reinforcement learning
Procedia PDF Downloads 927059 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 147058 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls
Authors: Akhila Palat, B. Umashankar
Abstract:
Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement
Procedia PDF Downloads 3037057 GA3C for Anomalous Radiation Source Detection
Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang
Abstract:
In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.Keywords: deep reinforcement learning, GA3C, source searching, source detection
Procedia PDF Downloads 1147056 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis
Procedia PDF Downloads 757055 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications
Authors: Catherine Kuforiji, Michel Nganbe
Abstract:
The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.Keywords: SS316L, Al2O3, powder metallurgy, wear characterization
Procedia PDF Downloads 3047054 Penetration Depth Study of Linear Siloxanes through Human Skin
Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska
Abstract:
Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation
Procedia PDF Downloads 4027053 Influence of Processing Parameters in Selective Laser Melting on the Microstructure and Mechanical Properties of Ti/Tin Composites With in-situ and ex-situ Reinforcement
Authors: C. Sánchez de Rojas Candela, A. Riquelme, P. Rodrigo, M. D. Escalera-Rodríguez, B. Torres, J. Rams
Abstract:
Selective laser melting is one of the most commonly used AM techniques. In it, a thin layer of metallic powder is deposited, and a laser is used to melt selected zones. The accumulation of layers, each one molten in the preselected zones, gives rise to the formation of a 3D sample with a nearly arbitrary design. To ensure that the properties of the final parts match those of the powder, all the process is carried out in an inert atmosphere, preferentially Ar, although this gas could be substituted. Ti6Al4V alloy is widely used in multiple industrial applications such as aerospace, maritime transport and biomedical, due to its properties. However, due to the demanding requirements of these applications, greater hardness and wear resistance are necessary, together with a better machining capacity, which currently limits its commercialization. To improve these properties, in this study, Selective Laser Melting (SLM) is used to manufacture Ti/TiN metal matrix composites with in-situ and ex-situ titanium nitride reinforcement where the scanning speed is modified (from 28.5 up to 65 mm/s) to study the influence of the processing parameters in SLM. A one-step method of nitriding the Ti6Al4V alloy is carried out to create in-situ TiN reinforcement in a reactive atmosphere and it is compared with ex-situ composites manufactured by previous mixture of both the titanium alloy powder and the ceramic reinforcement particles. The microstructure and mechanical properties of the different Ti/TiN composite materials have been analyzed. As a result, the existence of a similar matrix has been confirmed in in-situ and ex-situ fabrications and the growth mechanisms of the nitrides have been studied. An increase in the mechanical properties with respect to the initial alloy has been observed in both cases and related to changes in their microstructure. Specifically, a greater improvement (around 30.65%) has been identified in those manufactured by the in-situ method at low speeds although other properties such as porosity must be improved for their future industrial applicability.Keywords: in-situ reinforcement, nitriding reaction, selective laser melting, titanium nitride
Procedia PDF Downloads 80