Search results for: inputs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 653

Search results for: inputs

473 Fuzzy Logic Driven PID Controller for PWM Based Buck Converter

Authors: Bandreddy Anand Babu, Mandadi Srinivasa Rao, Chintala Pradeep Reddy

Abstract:

The main theme of this paper is to design fuzzy logic Proportional Integral Derivative controller for controlling of Pulse Width Modulator (PWM) based DCDC buck converter in continuous conduction mode of operation and comparing the results of FPID and ANFIS. Simulation is done to fuzzy the given input variables and membership functions of input values, creating the interference rules linking the input and output variables and after then defuzzfies the output variables. Fuzzy logic is simple for nonlinear models like buck converter. Fuzzy logic based PID controller technique is to control, nonlinear plants like buck converters in switching variables of power electronics. The characteristics of FPID are in terms of rise time, settling time, rise time, steady state errors for different inputs and load disturbances.

Keywords: fuzzy logic, PID controller, DC-DC buck converter, pulse width modulation

Procedia PDF Downloads 1015
472 Ways for University to Conduct Research Evaluation: Based on National Research University Higher School of Economics Example

Authors: Svetlana Petrikova, Alexander Yu Kostinskiy

Abstract:

Management of research evaluation in the Higher School of Economics (HSE) originates from the HSE Academic Fund created in 2004 to facilitate and support academic research and presents its results to international academic community. As the means to inspire the applicants, science projects went through competitive selection process evaluated by the group of experts. Drastic development of HSE, quantity of applied projects for each Academic Fund competition and the need to coordinate the conduct of expert evaluation resulted in founding of the Office for Research Evaluation in 2013. The Office’s primary objective is management of research evaluation of science projects. The standards to conduct the evaluation are defined as follows: - The exercise of the process approach, the unification of the functioning of department. - The uniformity of regulatory, organizational and methodological framework. - The development of proper on-line evaluation system. - The broad involvement of external Russian and international experts, the renouncement of the usage of own employees. - The development of an algorithm to make a correspondence between experts and science projects. - The methodical usage of opened/closed international and Russian databases to extend the expert database. - The transparency of evaluation results – free access to assessment while keeping experts confidentiality. The management of research evaluation of projects is based on the sole standard, organization and financing. The standard way of conducting research evaluation at HSE is based upon Regulations on basic principles for research evaluation at HSE. These Regulations have been developed from the moment of establishment of the Office for Research Evaluation and are based on conventional corporate standards for regulatory document management. The management system of research evaluation is implemented on the process approach basis. Process approach means deployment of work as a process, which is the aggregation of interrelated and interacting activities processing inputs into outputs. Inputs are firstly client asking for the assessment to be conducted, defining the conditions for organizing and carrying of the assessment and secondly the applicant with proper for the competition application; output is assessment given to the client. While exercising process approach to clarify interrelation and interacting main parties or subjects of the assessment are determined and the way for interaction between them forms up. Parties to expert assessment are: - Ordering Party – The department of the university taking the decision to subject a project to expert assessment; - Providing Party – The department of the university authorized to provide such assessment by the Ordering Party; - Performing Party – The legal and natural entities that have expertise in the area of research evaluation. Experts assess projects in accordance with criteria and states of expert opinions approved by the Ordering Party. Objects of assessment generally are applications or HSE competition project reports. Mainly assessments are deployed for internal needs, i.e. the most ordering parties are HSE branches and departments, but assessment can also be conducted for external clients. The financing of research evaluation at HSE is based on the established corporate culture and traditions of HSE.

Keywords: expert assessment, management of research evaluation, process approach, research evaluation

Procedia PDF Downloads 255
471 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques

Authors: Bum-Soo Kim, Jin-Uk Kim

Abstract:

In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.

Keywords: boundary image matching, indexing, partial denoising, time-series matching

Procedia PDF Downloads 141
470 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors

Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi

Abstract:

The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.

Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor

Procedia PDF Downloads 629
469 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
468 Mathematical Modeling of Activated Sludge Process: Identification and Optimization of Key Design Parameters

Authors: Ujwal Kishor Zore, Shankar Balajirao Kausley, Aniruddha Bhalchandra Pandit

Abstract:

There are some important design parameters of activated sludge process (ASP) for wastewater treatment and they must be optimally defined to have the optimized plant working. To know them, developing a mathematical model is a way out as it is nearly commensurate the real world works. In this study, a mathematical model was developed for ASP, solved under activated sludge model no 1 (ASM 1) conditions and MATLAB tool was used to solve the mathematical equations. For its real-life validation, the developed model was tested for the inputs from the municipal wastewater treatment plant and the results were quite promising. Additionally, the most cardinal assumptions required to design the treatment plant are discussed in this paper. With the need for computerization and digitalization surging in every aspect of engineering, this mathematical model developed might prove to be a boon to many biological wastewater treatment plants as now they can in no time know the design parameters which are required for a particular type of wastewater treatment.

Keywords: waste water treatment, activated sludge process, mathematical modeling, optimization

Procedia PDF Downloads 145
467 International Trade, Manufacturing and Employment: The First Two Decades of South African Democracy

Authors: Phillip F. Blaauw, Anna M. Pretorius

Abstract:

South Africa re-entered the international economy in the early 1990s, after Apartheid, at a time when globalisation was gathering momentum. Globalisation led to a more open economy, increased export volumes and a changed export mix. Manufacturing goods gained ground relative to mining products. After 21 years of democracy, South African researchers and policymakers need to evaluate the impact of international trade on the level of employment and compensation of employees in the South African manufacturing industry. This is important given the consistent and high levels of unemployment in South Africa. This paper has this evaluation as its aim. Two complimenting approaches are utilised. The 27 sub divisions of the South African manufacturing industry are classified according to capital/labour ratios. Possible trends in employment levels and employee compensation for these categories are then identified when comparing levels in 1995 to those in 2014. The supplementing empirical approach is cross-sectional and panel data regressions for the same period. The aim of the regression analysis is to explain the observed changes in employment and employee compensation levels between 1995 and 2014. The first part of the empirical approach revealed that over the 20-year period the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries all showed massive declines in overall employment. Only three of the 19 industries for these classifications showed marginal overall employment gains. The only meaningful gains were recorded in three of the eight capital intensive manufacturing industries. The overall performance of the South African manufacturing industry is therefore dismal at best. This scenario plays itself out for the skilled section of the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries as well. 18 out of the 19 industries displayed declines even for the skilled section of the labour force. The formal regression analysis supplements the above results. Real production growth is a statistically significant (95 per cent confidence level) explanatory variable of the overall employment level for the period under consideration, albeit with a small positive coefficient. The variables with the most significant negative relationship with changes in overall employment were the dummy variables for intermediate capital intensive and labour intensive manufacturing goods. Disaggregating overall changes in employment further in terms of skill levels revealed that skilled employment in particular responded negatively to increases in the ratio between imported and local inputs for manufacturing. The dummy variable for the labour intensive sectors remained negative and statistically significant, indicating that the labour intensive sectors of South African manufacturing remain vulnerable to the loss of employment opportunities. Whereas the first period (1995 to 2001) after the opening of the South African economy brought positive changes for skilled employment, continued increases in imported inputs displaced some of the skilled labour as well, putting further pressure on the South African economy with already high and persistent unemployment levels. Given the negative for the world commodity cycle and a stagnant local manufacturing sector, the challenge for policymakers is getting even more pronounced after South Africa’s political coming of age.

Keywords: capital/labour ratios, employment, employee compensation, manufacturing

Procedia PDF Downloads 221
466 Shock Formation for Double Ramp Surface

Authors: Abdul Wajid Ali

Abstract:

Supersonic flight promises speed, but the design of the air inlet faces an obstacle: shock waves. They prevent air flow in the mixed compression ports, which reduces engine performance. Our research investigates this using supersonic wind tunnels and schlieren imaging to reveal the complex dance between shock waves and airflow. The findings show clear patterns of shock wave formation influenced by internal/external pressure surfaces. We looked at the boundary layer, the slow-moving air near the inlet walls, and its interaction with shock waves. In addition, the study emphasizes the dependence of the shock wave behaviour on the Mach number, which highlights the need for adaptive models. This knowledge is key to optimizing the combined compression inputs, paving the way for more powerful and efficient supersonic vehicles. Future engineers can use this knowledge to improve existing designs and explore innovative configurations for next-generation ultrasonic applications.

Keywords: oblique shock formation, boundary layer interaction, schlieren images, double wedge surface

Procedia PDF Downloads 68
465 Developing an Audit Quality Model for an Emerging Market

Authors: Bita Mashayekhi, Azadeh Maddahi, Arash Tahriri

Abstract:

The purpose of this paper is developing a model for audit quality, with regard to the contextual and environmental attributes of the audit profession in Iran. For this purpose, using an exploratory approach, and because of the special attributes of the auditing profession in Iran in terms of the legal environment, regulatory and supervisory mechanisms, audit firms size, and etc., we used grounded theory approach as a qualitative research method. Therefore, we got the opinions of the experts in the auditing and capital market areas through unstructured interviews. As a result, the authors revealed the determinants of audit quality, and by using these determinants, developed an Integrated Audit Quality Model, including causal conditions, intervening conditions, context, as well as action strategies related to AQ and their consequences. In this research, audit quality is studied using a systemic approach. According to this approach, the quality of inputs, processes, and outputs of auditing determines the quality of auditing, therefore, the quality of all different parts of this system is considered.

Keywords: audit quality, integrated audit quality model, demand for audit service, supply of audit, grounded theory

Procedia PDF Downloads 285
464 Assessing Efficiency Trends in the Indian Sugar Industry

Authors: S. P. Singh

Abstract:

This paper measures technical and scale efficiencies of 40 Indian sugar companies for the period from 2004-05 to 2013-14. The efficiencies are estimated through input-oriented DEA models using one output variable—value of output (VOP) and five input variables—capital cost (CA), employee cost (EMP), raw material (RW), energy & fuel (E&F) and other manufacturing expenses (OME). The sugar companies are classified into integrated and non-integrated categories to know which one achieves higher level of efficiency. Sources of inefficiency in the industry are identified through decomposing the overall technical efficiency (TE) into pure technical efficiency (PTE) and scale efficiency (SE). The paper also estimates input-reduction targets for relatively inefficient companies and suggests measures to improve their efficiency level. The findings reveal that the TE does not evince any trend rather it shows fluctuations across years, largely due to erratic and cyclical pattern of sugar production. Further, technical inefficiency in the industry seems to be driven more by the managerial inefficiency than the scale inefficiency, which implies that TE can be improved through better conversion of inputs into output.

Keywords: DEA, slacks, sugar industry, technical efficiency

Procedia PDF Downloads 319
463 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 373
462 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 302
461 Application of Drones in Agriculture

Authors: Reza Taherlouei Safa, Mohammad Aboonajmi

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: drone, precision agriculture, farmer income, UAV

Procedia PDF Downloads 82
460 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 211
459 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 83
458 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features

Authors: Asmaa Shehata

Abstract:

Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.

Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning

Procedia PDF Downloads 256
457 Multi-Objective Optimization of Assembly Manufacturing Factory Setups

Authors: Andreas Lind, Aitor Iriondo Pascual, Dan Hogberg, Lars Hanson

Abstract:

Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.

Keywords: factory setup, multi-objective, optimization, simulation

Procedia PDF Downloads 153
456 Integrated Environmental Management System and Environmental Impact Assessment in Evaluation of Environmental Protective Action

Authors: Moustafa Osman

Abstract:

The paper describes and analyses different good practice examples of protective levels, and initiatives actions (“framework conditions”) and encourages the uptake of environmental management systems (EMSs) to small and medium-sized enterprises (SMEs). Most of industries tend to take EMS as tools leading towards sustainability planning. The application of these tools has numerous environmental obligations that neither suggests decision nor recommends what a company should achieve ultimately. These set up clearly defined criteria to evaluate environmental protective action (EEPA) into sustainability indicators. The physical integration will evaluate how to incorporate traditional knowledge into baseline information, preparing impact prediction, and planning mitigation measures in monitoring conditions. Thereby efforts between the government, industry and community led protective action to concern with present needs for future generations, meeting the goal of sustainable development. The paper discusses how to set out distinct aspects of sustainable indicators and reflects inputs, outputs, and modes of impact on the environment.

Keywords: environmental management, sustainability, indicators, protective action

Procedia PDF Downloads 443
455 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach

Authors: M. Zamurad Shah, M. Kemal Ozgoren, Raza Samar

Abstract:

This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.

Keywords: unmanned aerial vehicles, sliding mode control, 3D guidance, nonlinear sliding manifolds

Procedia PDF Downloads 451
454 Supply and Marketing of Floriculture in Ethiopia

Authors: Assefa Mitike Janko, Gosa Alemu

Abstract:

The review of supply and marketing of floriculture in Ethiopia was conducted to analyses the production potential and to know the marketing share of the country. The data was collected from secondary and primary. Ethiopia has been operating in the floriculture industry for over 20 years. As is the case in many developing countries, the major export items of Ethiopia are dominated by few agricultural products that earn very small amounts in the international market. Moreover, most of the exports are destined to only few countries. Given the highly capital intensive nature of production and processing, rose farming is not a smallholder activity. It is also important to note the extremely tightly controlled time dimension of the logistics process, given the product attributes desired and the fragility and perishability of the roses. Another characteristic of the Ethiopian floriculture sector is the lack of domestically produced inputs that flower producers can access. The export volume and value of cut-flowers accounts for a small proportion of the total exports of Ethiopia. In recent years the sector is showing improvements in terms of the quality and quantity of exports to the international market.

Keywords: roses, production, value chain, floriculture, supply

Procedia PDF Downloads 380
453 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling

Authors: Ashish Mahalle, Kishore Borakhade

Abstract:

High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.

Keywords: pores, foam, effective thermal conductivity, permeability

Procedia PDF Downloads 311
452 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 599
451 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 153
450 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance

Authors: Javier Parra-Domínguez, Juan Manuel Corchado

Abstract:

At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.

Keywords: case-based reasoning, knowledge, police, public efficiency

Procedia PDF Downloads 137
449 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 49
448 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 322
447 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 138
446 Dual-Rail Logic Unit in Double Pass Transistor Logic

Authors: Hamdi Belgacem, Fradi Aymen

Abstract:

In this paper we present a low power, low cost differential logic unit (LU). The proposed LU receives dual-rail inputs and generates dual-rail outputs. The proposed circuit can be used in Arithmetic and Logic Units (ALU) of processor. It can be also dedicated for self-checking applications based on dual duplication code. Four logic functions as well as their inverses are implemented within a single Logic Unit. The hardware overhead for the implementation of the proposed LU is lower than the hardware overhead required for standard LU implemented with standard CMOS logic style. This new implementation is attractive as fewer transistors are required to implement important logic functions. The proposed differential logic unit can perform 8 Boolean logical operations by using only 16 transistors. Spice simulations using a 32 nm technology was utilized to evaluate the performance of the proposed circuit and to prove its acceptable electrical behaviour.

Keywords: differential logic unit, double pass transistor logic, low power CMOS design, low cost CMOS design

Procedia PDF Downloads 452
445 Concurrent Hazard Fragility Analysis with Consideration of Structural Uncertainties

Authors: Ling-Han Liu, Qian-Qian Yu, Xiang-Lin Gu

Abstract:

In this paper, the fragility analysis of earthquake-strong wind concurrent hazards considering structural uncertainties was conducted. Eleven sets of structural uncertainty parameters were considered, and random structural models were generated using Latin hypercube sampling. The uncertainties in seismic ground motion and wind load inputs were incorporated, and the conditional failure probability of the structures was calculated. A 12-story concrete building was used as an example, with the IDR (Inter-story Drift Ratio) as the performance indicator. The failure probabilities under individual and multiple hazards were compared, along with a comparison of fragility analysis results with and without considering structural uncertainties. The numerical simulations show that including structural uncertainties increases the structural failure probability by 20%. The peak stress and strain of core-restrained concrete, the structural damping ratio, and the peak stress of unrestrained concrete are found to be decisive factors in the structural response.

Keywords: structural uncertainty, incremental dynamic analysis, multi-hazard fragility, latin hypercube sampling

Procedia PDF Downloads 6
444 Hotel Guests’ Service Fulfillment: Bangkok, Thailand

Authors: Numtana Ladplee, Cherif Haberih

Abstract:

The value of service evaluation depends critically on guests’ understanding of the evaluation objectives and their roles. The present research presents a three-phase investigation of the impact of evaluating participants’ theories about their roles: (a) identifying the theories, (b) testing the process consequences of participants’ role theories, and (c) gaining insights into the impact of participants’ role theories by testing key moderator/s. The findings of this study will hopefully indicate that (a) when forewarned of an upcoming evaluation task, consumers tend to believe that the evaluation objective is to identify aspects that need improvement, (b) this expectation produces a conscious attempt to identify negative aspects, although the encoding of attribute information is not affected, and (c) cognitive load during the evaluation experience greatly decreases the negativity of expected evaluations. The present study can be applied to other market research techniques and thereby improve our understanding of consumer inputs derived from market research. Such insights can help diminish biases produced by participants’ correct or incorrect theories regarding their roles.

Keywords: fulfillment, hotel guests, service, Thailand

Procedia PDF Downloads 278