Search results for: input processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5661

Search results for: input processing

5481 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 57
5480 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 144
5479 Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle

Authors: Mirza Mohibulla Baig, Imil Hamda Imran, Tri Bagus Susilo, Sami El Ferik

Abstract:

The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault.

Keywords: system identification, underwater vehicle, integral method, recursive least square, weighted recursive least square, feedback linearization, integral error

Procedia PDF Downloads 536
5478 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 439
5477 Dynamic Store Procedures in Database

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

In recent years, different methods have been proposed to optimize question processing in database. Although different methods have been proposed to optimize the query, but the problem which exists here is that most of these methods destroy the query execution plan after executing the query. This research attempts to solve the above problem by using a combination of methods of communicating with the database (the present questions in the programming code and using store procedures) and making query processing adaptive in database, and proposing a new approach for optimization of query processing by introducing the idea of dynamic store procedures. This research creates dynamic store procedures in the database according to the proposed algorithm. This method has been tested on applied software and results shows a significant improvement in reducing the query processing time and also reducing the workload of DBMS. Other advantages of this algorithm include: making the programming environment a single environment, eliminating the parametric limitations of the stored procedures in the database, making the stored procedures in the database dynamic, etc.

Keywords: relational database, agent, query processing, adaptable, communication with the database

Procedia PDF Downloads 372
5476 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 524
5475 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 419
5474 Challenging Weak Central Coherence: An Exploration of Neurological Evidence from Visual Processing and Linguistic Studies in Autism Spectrum Disorder

Authors: Jessica Scher Lisa, Eric Shyman

Abstract:

Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by persistent deficits in social communication and social interaction (i.e. deficits in social-emotional reciprocity, nonverbal communicative behaviors, and establishing/maintaining social relationships), as well as by the presence of repetitive behaviors and perseverative areas of interest (i.e. stereotyped or receptive motor movements, use of objects, or speech, rigidity, restricted interests, and hypo or hyperactivity to sensory input or unusual interest in sensory aspects of the environment). Additionally, diagnoses of ASD require the presentation of symptoms in the early developmental period, marked impairments in adaptive functioning, and a lack of explanation by general intellectual impairment or global developmental delay (although these conditions may be co-occurring). Over the past several decades, many theories have been developed in an effort to explain the root cause of ASD in terms of atypical central cognitive processes. The field of neuroscience is increasingly finding structural and functional differences between autistic and neurotypical individuals using neuro-imaging technology. One main area this research has focused upon is in visuospatial processing, with specific attention to the notion of ‘weak central coherence’ (WCC). This paper offers an analysis of findings from selected studies in order to explore research that challenges the ‘deficit’ characterization of a weak central coherence theory as opposed to a ‘superiority’ characterization of strong local coherence. The weak central coherence theory has long been both supported and refuted in the ASD literature and has most recently been increasingly challenged by advances in neuroscience. The selected studies lend evidence to the notion of amplified localized perception rather than deficient global perception. In other words, WCC may represent superiority in ‘local processing’ rather than a deficit in global processing. Additionally, the right hemisphere and the specific area of the extrastriate appear to be key in both the visual and lexicosemantic process. Overactivity in the striate region seems to suggest inaccuracy in semantic language, which lends itself to support for the link between the striate region and the atypical organization of the lexicosemantic system in ASD.

Keywords: autism spectrum disorder, neurology, visual processing, weak coherence

Procedia PDF Downloads 127
5473 Assessing Efficiency Trends in the Indian Sugar Industry

Authors: S. P. Singh

Abstract:

This paper measures technical and scale efficiencies of 40 Indian sugar companies for the period from 2004-05 to 2013-14. The efficiencies are estimated through input-oriented DEA models using one output variable—value of output (VOP) and five input variables—capital cost (CA), employee cost (EMP), raw material (RW), energy & fuel (E&F) and other manufacturing expenses (OME). The sugar companies are classified into integrated and non-integrated categories to know which one achieves higher level of efficiency. Sources of inefficiency in the industry are identified through decomposing the overall technical efficiency (TE) into pure technical efficiency (PTE) and scale efficiency (SE). The paper also estimates input-reduction targets for relatively inefficient companies and suggests measures to improve their efficiency level. The findings reveal that the TE does not evince any trend rather it shows fluctuations across years, largely due to erratic and cyclical pattern of sugar production. Further, technical inefficiency in the industry seems to be driven more by the managerial inefficiency than the scale inefficiency, which implies that TE can be improved through better conversion of inputs into output.

Keywords: DEA, slacks, sugar industry, technical efficiency

Procedia PDF Downloads 318
5472 Evaluation of the Safety Status of Beef Meat During Processing at Slaughterhouse in Bouira, Algeria

Authors: A. Ameur Ameur, H. Boukherrouba

Abstract:

In red meat slaughterhouses a significant number of organs and carcasses were seized because of the presence of lesions of various origins. The objective of this study is to characterize and evaluate the frequency of these lesions in the slaughterhouse of the Wilaya of BOUIRA. On cattle slaughtered in 2646 and inspected 72% of these carcasses have been no seizures against 28% who have undergone at least one entry. 325 lung (44%), 164 livers (22%), 149 hearts (21%) are the main saisis.38 kidneys members (5%), 33 breasts (4%) and 16 whole carcasses (2%) are less seizures parties. The main reasons are the input hydatid cyst for most seized organs such as the lungs (64.5%), livers (51.8%), hearts (23.2%), hydronephrosis for the kidneys (39.4%), and chronic mastitis (54%) for the breasts. Then we recorded second-degree pneumonia (16%) to the lungs, chronic fascioliasis (25%) for livers. A significant difference was observed (p < 0.0001) by sex, race, origin and age of all cattle having been saisie.une a specific input patterns and So pathology was recorded based on race. The local breed presented (75.2%) of hydatid cyst, (95%) and chronic fascioliasis (60%) pyelonephritis, for against the improved breed presented the entire respiratory lesions include pneumonia (64%) the chronic tuberculosis (64%) and mastitis (76%). These results are an important step in the implementation of the concept of risk assessment as the scientific basis of food legislation, by the identification and characterization of macroscopic damage leading withdrawals in meat and to establish the level of inclusion of these injuries within the recommended risk assessment systems (HACCP).

Keywords: slaughterhouses, meat safety, seizure patterns, HACCP

Procedia PDF Downloads 465
5471 Effect of Sub Supercritical CO2 Processing on Microflora and Shelf Life Tempe

Authors: M. Kustyawati, F. Pratama, D. Saputra, A. Wijaya

Abstract:

Tempe composes of not only molds but also bacteria and yeasts. The structure of microorganisms needs to be in balance number in order the tempe to be an acceptable quality for an extended time. Sub supercritical carbon dioxide can be a promising preservation method for tempe as it induces microbial inactivation avoiding alterations of its quality attributes. Fresh tempe were processed using supercritical and sub supercritical CO2 for a defined holding times, then the growth ability of molds and bacteria were analyzed. The results showed that the supercritical CO2 processing for 5 minutes reduced the number of bacteria and molds to 0.30 log cycle and 1.17 log cycles, respectively. In addition, sub supercritical CO2 processing for 20 minutes had fungicidal effect against mold tempe; whereas, the sub supercritical CO2 for 10 minutes had reducing effect against bacteria tempe, and had fungistatic affect against mold tempe. It suggested that sub-supercritical CO2 processing for 10 min could be useful alternative technique for preservation of tempe.

Keywords: tempe, sub supercritical CO2, fungistatic effect, preservation

Procedia PDF Downloads 269
5470 A Fast Convergence Subband BSS Structure

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin

Abstract:

A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 555
5469 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 154
5468 SQL Generator Based on MVC Pattern

Authors: Chanchai Supaartagorn

Abstract:

Structured Query Language (SQL) is the standard de facto language to access and manipulate data in a relational database. Although SQL is a language that is simple and powerful, most novice users will have trouble with SQL syntax. Thus, we are presenting SQL generator tool which is capable of translating actions and displaying SQL commands and data sets simultaneously. The tool was developed based on Model-View-Controller (MVC) pattern. The MVC pattern is a widely used software design pattern that enforces the separation between the input, processing, and output of an application. Developers take full advantage of it to reduce the complexity in architectural design and to increase flexibility and reuse of code. In addition, we use White-Box testing for the code verification in the Model module.

Keywords: MVC, relational database, SQL, White-Box testing

Procedia PDF Downloads 422
5467 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
5466 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 118
5465 Propagation of DEM Varying Accuracy into Terrain-Based Analysis

Authors: Wassim Katerji, Mercedes Farjas, Carmen Morillo

Abstract:

Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.

Keywords: terrain-based analysis, slope, accuracy assessment, Digital Elevation Model (DEM)

Procedia PDF Downloads 446
5464 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: noise signal, pulse interference, signal power, spectrum width, detection

Procedia PDF Downloads 337
5463 Analysis and Improvement of Efficiency for Food Processing Assembly Lines

Authors: Mehmet Savsar

Abstract:

Several factors affect productivity of Food Processing Assembly Lines (FPAL). Engineers and line managers usually do not recognize some of these factors and underutilize their production/assembly lines. In this paper, a special food processing assembly line is studied in detail, and procedures are presented to illustrate how productivity and efficiency of such lines can be increased. The assembly line considered produces ten different types of freshly prepared salads on the same line, which is called mixed model assembly line. Problems causing delays and inefficiencies on the line are identified. Line balancing and related tools are used to increase line efficiency and minimize balance delays. The procedure and the approach utilized in this paper can be useful for the operation managers and industrial engineers dealing with similar assembly lines in food processing industry.

Keywords: assembly lines, line balancing, production efficiency, bottleneck

Procedia PDF Downloads 388
5462 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: adaptive algorithm, fuzzy systems, membership functions, observer

Procedia PDF Downloads 206
5461 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 258
5460 A Goal-Oriented Approach for Supporting Input/Output Factor Determination in the Regulation of Brazilian Electricity Transmission

Authors: Bruno de Almeida Vilela, Heinz Ahn, Ana Lúcia Miranda Lopes, Marcelo Azevedo Costa

Abstract:

Benchmarking public utilities such as transmission system operators (TSOs) is one of the main strategies employed by regulators in order to fix monopolistic companies’ revenues. Since 2007 the Brazilian regulator has been utilizing Data Envelopment Analysis (DEA) to benchmark TSOs. Despite the application of DEA to improve the transmission sector’s efficiency, some problems can be pointed out, such as the high price of electricity in Brazil; the limitation of the benchmarking only to operational expenses (OPEX); the absence of variables that represent the outcomes of the transmission service; and the presence of extremely low and high efficiencies. As an alternative to the current concept of benchmarking the Brazilian regulator uses, we propose a goal-oriented approach. Our proposal supports input/output selection by taking traditional organizational goals and measures as a basis for the selection of factors for benchmarking purposes. As the main advantage, it resolves the classical DEA problems of input/output selection, undesirable and dual-role factors. We also provide a demonstration of our goal-oriented concept regarding service quality. As a result, most TSOs’ efficiencies in Brazil might improve when considering quality as important in their efficiency estimation.

Keywords: decision making, goal-oriented benchmarking, input/output factor determination, TSO regulation

Procedia PDF Downloads 196
5459 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry

Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai

Abstract:

The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.

Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy

Procedia PDF Downloads 101
5458 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais, ADS

Procedia PDF Downloads 466
5457 Consideration of Uncertainty in Engineering

Authors: A. Mohammadi, M. Moghimi, S. Mohammadi

Abstract:

Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.

Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method

Procedia PDF Downloads 414
5456 Dimensioning of a Solar Dryer with Application of an Experiment Design Method for Drying Food Products

Authors: B. Touati, A. Saad, B. Lips, A. Abdenbi, M. Mokhtari.

Abstract:

The purpose of this study is an application of experiment design method for dimensioning of a solar drying system. NIMROD software was used to build up the matrix of experiments and to analyze the results. The software has the advantages of being easy to use and consists of a forced way, with some choices about the number and range of variation of the parameters, and the desired polynomial shape. The first design of experiments performed concern the drying with constant input characteristics of the hot air in the dryer and a second design of experiments in which the drying chamber is coupled with a solar collector. The first design of experiments allows us to study the influence of various parameters and get the studied answers in a polynomial form. The correspondence between the polynomial thus determined, and the model results were good. The results of the polynomials of the second design of experiments and those of the model are worse than the results in the case of drying with constant input conditions. This is due to the strong link between all the input parameters, especially, the surface of the sensor and the drying chamber, and the mass of the product.

Keywords: solar drying, experiment design method, NIMROD, mint leaves

Procedia PDF Downloads 503
5455 Performance Analysis of M-Ary Pulse Position Modulation in Multihop Multiple Input Multiple Output-Free Space Optical System over Uncorrelated Gamma-Gamma Atmospheric Turbulence Channels

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of Decode and Forward (DF) multihop Free Space Optical ( FSO) scheme deploying Multiple Input Multiple Output (MIMO) configuration under Gamma-Gamma (GG) statistical distribution, that adopts M-ary Pulse Position Modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of Symbol-Error Rates (SERs) respectively. A closed form formula related to the Probability Density Function (PDF) is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.

Keywords: free space optical, multiple input multiple output, M-ary pulse position modulation, multihop, decode and forward, symbol error rate, gamma-gamma channel

Procedia PDF Downloads 199
5454 Differentials in Reproductive and Child Health Care in India

Authors: Dewaram Abhiman Nagdeve

Abstract:

The present paper examined the urban-rural differentials and the factors influencing net change in reproductive and child health input, its utilization, and its output during the National Family Health Survey conducted during 1992-93 and 2019-21 in India. The analysis of NFHS data has been done and variables have been grouped into health input regarding antenatal care, postnatal care, and child care, utilization regarding reproductive and child health care, and reproductive and child health outcomes. An analysis was done using bivariate analysis and the chi-square test. The study reveals that there was an increase in health input, utilization, and output during the intra-survey period. Urban-rural disparities in Reproductive and Child Health (RCH) indicators persist, highlighting the need for focused intervention by the Indian government. Key steps should include enhancing RCH programs through robust information and education campaigns and deploying dedicated health personnel to remote and inaccessible rural areas. These initiatives are crucial to reducing both maternal and child mortality rates and ensuring equitable healthcare access nationwide.

Keywords: urban, rural, differentials, reproductive and child health, India

Procedia PDF Downloads 2
5453 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: parallel 2-opt, double links, large scale TSP, GPU

Procedia PDF Downloads 625
5452 The Impact of Artificial Intelligence on Food Nutrition

Authors: Antonyous Fawzy Boshra Girgis

Abstract:

Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.

Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 40