Search results for: informed decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7744

Search results for: informed decision making

7564 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: business intelligence, business intelligence capability, decision making, decision quality

Procedia PDF Downloads 112
7563 System of System Decisions Framework for Cross-Border Railway Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki, Anastasia Kalamakidou

Abstract:

Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in the decision process and –many times- the investment and business risks are high. Decision makers and stakeholders need to define the framework and the outputs of the decision process taking into account the project characteristics, the business uncertainties, and the different expectations. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross-border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analysed. Adopting the on system of system methodological approach, the decision making the framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey, and Bulgaria.

Keywords: system of system decision making, managing decisions for transport projects, decision support framework, defining decision process

Procedia PDF Downloads 309
7562 The Role of Emotions in Addressing Social and Environmental Issues in Ethical Decision Making

Authors: Kirsi Snellman, Johannes Gartner, , Katja Upadaya

Abstract:

A transition towards a future where the economy serves society so that it evolves within the safe operating space of the planet calls for fundamental changes in the way managers think, feel and act, and make decisions that relate to social and environmental issues. Sustainable decision-making in organizations are often challenging tasks characterized by trade-offs between environmental, social and financial aspects, thus often bringing forth ethical concerns. Although there have been significant developments in incorporating uncertainty into environmental decision-making and measuring constructs and dimensions in ethical behavior in organizations, the majority of sustainable decision-making models are rationalist-based. Moreover, research in psychology indicates that one’s readiness to make a decision depends on the individual’s state of mind, the feasibility of the implied change, and the compatibility of strategies and tactics of implementation. Although very informative, most of this extant research is limited in the sense that it often directs attention towards the rational instead of the emotional. Hence, little is known about the role of emotions in sustainable decision making, especially in situations where decision-makers evaluate a variety of options and use their feelings as a source of information in tackling the uncertainty. To fill this lacuna, and to embrace the uncertainty and perceived risk involved in decisions that touch upon social and environmental aspects, it is important to add emotion to the evaluation when aiming to reach the one right and good ethical decision outcome. This analysis builds on recent findings in moral psychology that associate feelings and intuitions with ethical decisions and suggests that emotions can sensitize the manager to evaluate the rightness or wrongness of alternatives if ethical concerns are present in sustainable decision making. Capturing such sensitive evaluation as triggered by intuitions, we suggest that rational justification can be complemented by using emotions as a tool to tune in to what feels right in making sustainable decisions. This analysis integrates ethical decision-making theories with recent advancements in emotion theories. It determines the conditions under which emotions play a role in sustainability decisions by contributing to a personal equilibrium in which intuition and rationality are both activated and in accord. It complements the rationalist ethics view according to which nothing fogs the mind in decision making so thoroughly as emotion, and the concept of cheater’s high that links unethical behavior with positive affect. This analysis contributes to theory with a novel theoretical model that specifies when and why managers, who are more emotional, are, in fact, more likely to make ethical decisions than those managers who are more rational. It also proposes practical advice on how emotions can convert the manager’s preferences into choices that benefit both common good and one’s own good throughout the transition towards a more sustainable future.

Keywords: emotion, ethical decision making, intuition, sustainability

Procedia PDF Downloads 133
7561 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 395
7560 Exploring the Interplay Between Emotions, Employee’s Social Cognition and Decision Making Among Employees

Authors: Khushi, Simrat

Abstract:

The study aims to investigate the relationship between emotions and employee's social cognition and decision-making among employees. The sample of the study was the total number of participants, which included employees from various industries and job positions. Research papers in the same area were reviewed, providing a comprehensive review of existing literature and theoretical frameworks and shedding light on the interpersonal effects of emotions in the workplace. It emphasizes how one worker's emotions can significantly impact the overall work environment and productivity as well as the work of a common phenomenon known as Emotional contagion at the workplace, affecting social interactions and group dynamics. Therefore, this study concludes that Emotional contagion can lead to a ripple effect within the workplace, influencing the overall atmosphere and productivity. Emotions can shape how employees process information and make choices, ultimately impacting organizational outcomes.

Keywords: employee decision making, social cognition, emotions, industry, emotional contagion, workplace dynamics

Procedia PDF Downloads 60
7559 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making

Authors: Mohammad Sadeghi, Mahdieh Saniee

Abstract:

Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.

Keywords: rationality, decision-making process, policymaking, development

Procedia PDF Downloads 115
7558 Introducing Design Principles for Clinical Decision Support Systems

Authors: Luca Martignoni

Abstract:

The increasing usage of clinical decision support systems in healthcare and the demand for software that enables doctors to take informed decisions is changing everyday clinical practice. However, as technology advances not only are the benefits of technology growing, but so are the potential risks. A growing danger is the doctors’ over-reliance on the proposed decision of the clinical decision support system, leading towards deskilling and rash decisions by doctors. In that regard, identifying doctors' requirements for software and developing approaches to prevent technological over-reliance is of utmost importance. In this paper, we report the results of a design science research study, focusing on the requirements and design principles of ultrasound software. We conducted a total of 15 interviews with experts about poten-tial ultrasound software functions. Subsequently, we developed meta-requirements and design principles to design future clinical decision support systems efficiently and as free from the occur-rence of technological over-reliance as possible.

Keywords: clinical decision support systems, technological over-reliance, design principles, design science research

Procedia PDF Downloads 101
7557 A Qualitative Study to Analyze Clinical Coders’ Decision Making Process of Adverse Drug Event Admissions

Authors: Nisa Mohan

Abstract:

Clinical coding is a feasible method for estimating the national prevalence of adverse drug event (ADE) admissions. However, under-coding of ADE admissions is a limitation of this method. Whilst the under-coding will impact the accurate estimation of the actual burden of ADEs, the feasibility of the coded data in estimating the adverse drug event admissions goes much further compared to the other methods. Therefore, it is necessary to know the reasons for the under-coding in order to improve the clinical coding of ADE admissions. The ability to identify the reasons for the under-coding of ADE admissions rests on understanding the decision-making process of coding ADE admissions. Hence, the current study aimed to explore the decision-making process of clinical coders when coding cases of ADE admissions. Clinical coders from different levels of coding job such as trainee, intermediate and advanced level coders were purposefully selected for the interviews. Thirteen clinical coders were recruited from two Auckland region District Health Board hospitals for the interview study. Semi-structured, one-on-one, face-to-face interviews using open-ended questions were conducted with the selected clinical coders. Interviews were about 20 to 30 minutes long and were audio-recorded with the approval of the participants. The interview data were analysed using a general inductive approach. The interviews with the clinical coders revealed that the coders have targets to meet, and they sometimes hesitate to adhere to the coding standards. Coders deviate from the standard coding processes to make a decision. Coders avoid contacting the doctors for clarifying small doubts such as ADEs and the name of the medications because of the delay in getting a reply from the doctors. They prefer to do some research themselves or take help from their seniors and colleagues for making a decision because they can avoid a long wait to get a reply from the doctors. Coders think of ADE as a small thing. Lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing may contribute to the under-coding of the ADE admissions. These findings suggest that further work is needed on interventions to improve the clinical coding of ADE admissions. Providing education to coders about the importance of ADEs, educating clinicians about the importance of clear and confirmed medical records entries, availing pharmacists’ services to improve the detection and clear documentation of ADE admissions, and including a mandatory field in the discharge summary about external causes of diseases may be useful for improving the clinical coding of ADE admissions. The findings of the research will help the policymakers to make informed decisions about the improvements. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. This country-specific research conducted in New Zealand may also benefit other countries by providing insight into the clinical coding of ADE admissions and will offer guidance about where to focus changes and improvement initiatives.

Keywords: adverse drug events, clinical coders, decision making, hospital admissions

Procedia PDF Downloads 120
7556 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 285
7555 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 92
7554 Evaluation of Suitable Housing System for Adoption in Addis Ababa

Authors: Yidnekachew Daget, Hong Zhang

Abstract:

The decision-making process in order to select the suitable housing system for application in housing construction has been a challenge for many developing countries. This study evaluates the decision process to identify the suitable housing systems for adoption in Addis Ababa. Ten industrialized housing systems were considered as alternatives for comparison. These systems have been used in a housing development in different parts of the world. A relevant literature review and contextual analysis were conducted. An analytical hierarchy process and an Expert Choice Comparion platform were employed as a research technique and tool to evaluate the professionals’ level of preferences with regard to the housing systems. The findings revealed the priority rank and characteristics of the suitable housing systems to be adapted for application in housing development. The decision criteria and the analytical process used in this study can help the decision-makers and the housing developers in developing countries make effective evaluations and decisions.

Keywords: analytical hierarchy process, decision-making, expert choice comparion, industrialized housing systems

Procedia PDF Downloads 269
7553 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)

Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang

Abstract:

This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.

Keywords: decision tree, data mining, customers, life insurance pay package

Procedia PDF Downloads 428
7552 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups

Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley

Abstract:

Significant long-term investment projects can involve complex decisions. These are often described as capital projects, and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives; these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in the complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with the perception of veracity and validity of the data presented; this impacted the ability of group to reach consensus and, therefore, for decisions to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.

Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making

Procedia PDF Downloads 131
7551 The Role of Group Interaction and Managers’ Risk-willingness for Business Model Innovation Decisions: A Thematic Analysis

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. The individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) How does group interaction shape BMI decision-making from managers’ perspective? ii) What are the potential interrelations among managers’ risk-willingness, group biases, and BMI decision-making? After conducting 26 in-depth interviews with executives from the manufacturing industry, applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, cognitive biases, group-interaction effects, strategic decision-making, risk-willingness

Procedia PDF Downloads 79
7550 Reexamining Contrarian Trades as a Proxy of Informed Trades: Evidence from China's Stock Market

Authors: Dongqi Sun, Juan Tao, Yingying Wu

Abstract:

This paper reexamines the appropriateness of contrarian trades as a proxy of informed trades, using high frequency Chinese stock data. Employing this measure for 5 minute intervals, a U-shaped intraday pattern of probability of informed trades (PIN) is found for the CSI300 stocks, which is consistent with previous findings for other markets. However, while dividing the trades into different sizes, a reversed U-shaped PIN from large-sized trades, opposed to the U-shaped pattern for small- and medium-sized trades, is observed. Drawing from the mixed evidence with different trade sizes, the price impact of trades is further investigated. By examining the relationship between trade imbalances and unexpected returns, larges-sized trades are found to have significant price impact. This implies that in those intervals with large trades, it is non-contrarian trades that are more likely to be informed trades. Taking account of the price impact of large-sized trades, non-contrarian trades are used to proxy for informed trading in those intervals with large trades, and contrarian trades are still used to measure informed trading in other intervals. A stronger U-shaped PIN is demonstrated from this modification. Auto-correlation and information advantage tests for robustness also support the modified informed trading measure.

Keywords: contrarian trades, informed trading, price impact, trade imbalance

Procedia PDF Downloads 165
7549 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 94
7548 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 24
7547 Risk Tolerance in Youth With Emerging Mood Disorders

Authors: Ange Weinrabe, James Tran, Ian B. Hickie

Abstract:

Risk-taking behaviour is common during youth. In the time between adolescence and early adulthood, young people (aged 15-25 years) are more vulnerable to mood disorders, such as anxiety and depression. What impact does an emerging mood disorder have on decision-making in youth at critical decision points in their lives? In this article, we explore the impact of risk and ambiguity on youth decision-making in a clinical setting using a well-known economic experiment. At two time points, separated by six to eight weeks, we measured risky and ambiguous choices concurrently with findings from three psychological questionnaires, the 10-item Kessler Psychological Distress Scale (K10), the 17-item Quick Inventory of Depressive Symptomatology Adolescent Version (QIDS-A17), and the 12-item Somatic and Psychological Health Report (SPHERE-12), for young help seekers aged 16-25 (n=30, mean age 19.22 years, 19 males). When first arriving for care, we found that 50% (n=15) of participants experienced severe anxiety (K10 ≥ 30) and were severely depressed (QIDS-A17 ≥ 16). In Session 2, taking attrition rates into account (n=5), we found that 44% (n=11) remained severe across the full battery of questionnaires. When applying multiple regression analyses of the pooled sample of observations (N=55), across both sessions, we found that participants who rated severely anxious avoided making risky decisions. We suggest there is some statistically significant (although weak) (p=0.09) relation between risk and severe anxiety scores as measured by K10. Our findings may support working with novel tools with which to evaluate youth experiencing an emerging mood disorder and their cognitive capacities influencing decision-making.

Keywords: anxiety, decision-making, risk, adolescence

Procedia PDF Downloads 116
7546 Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering

Authors: Malay Niraj, Praveen Kumar

Abstract:

The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected.

Keywords: maintenance strategy, overall equipment efficiency, value engineering, decision-making

Procedia PDF Downloads 409
7545 Risk Analysis in Road Transport of Dangerous Goods Using Complex Multi-Criteria Analysis Method

Authors: Zoran Masoničić, Siniša Dragutinović, Ivan Lazović

Abstract:

In the management and organization of the road transport of dangerous goods, in addition to the existing influential criteria and restrictions that apply to the road transport in general, it is necessary to include an additional criteria related to the safety of people and the environment, considering the danger that comes from the substances being transported. In that manner, the decision making process becomes very complex and rather challenging task that is inherent to the application of complex numerical multi-criteria analysis methods. In this paper some initial results of application of complex analysis method in decision making process are presented. Additionally, the method for minimization or even complete elimination of subjective element in the decision making process is provided. The results obtained can be used in order to point the direction towards some measures have to be applied in order to minimize or completely annihilate the influence of the risk source identified.

Keywords: road transport, dangerous goods, risk analysis, risk evaluation

Procedia PDF Downloads 18
7544 Use of Information Technology in the Government of a State

Authors: Pavel E. Golosov, Vladimir I. Gorelov, Oksana L. Karelova

Abstract:

There are visible changes in the world organization, environment and health of national conscience that create a background for discussion on possible redefinition of global, state and regional management goals. Authors apply the sustainable development criteria to a hierarchical management scheme that is to lead the world community to non-contradictory growth. Concrete definitions are discussed in respect of decision-making process representing the state mostly. With the help of system analysis it is highlighted how to understand who would carry the distinctive sign of world leadership in the nearest future.

Keywords: decision-making, information technology, public administration

Procedia PDF Downloads 515
7543 Strategic Thinking to Enhance Critical Transport Infrastructure and Build Resilience

Authors: Jayantha Withanaarachchi, Sujeeva Setunge, Sara Moridpour

Abstract:

Gaps in strategic thinking and planning lead to critical transport infrastructure resilience. These gaps in strategic transport and land use development planning have an impact on communities and cities. Natural and man-induced disasters can be catastrophic to communities. After a disaster, many types of critical infrastructure, including transport infrastructure gets un-usable or gets damaged. This paper examines strategic thinking behind the resilience and protection of Critical Transport Infrastructure (CI) within transport networks by investigating the impact of disasters such as bushfires, hurricanes and earthquakes. A detailed analysis of three case studies have been conducted to identify the gaps in strategic transport planning and strategic decision making processes required to mitigate the impacts of disasters. Case studies will be analysed to identify existing gaps in road design, transport planning and decision making. This paper examines the effect of road designing, transport corridors and decision making during transport planning stages and how it impacts transport infrastructure as well as community resilience. A set of recommendations to overcome the shortcomings of existing strategic planning and designing process are presented. This research paper reviews transport infrastructure planning issues and presents the common approach suitable for future strategic thinking and planning which could be adopted in practices.

Keywords: community resilience, decision making , infrastructure resilience, strategic transport planning, transport infrastructure

Procedia PDF Downloads 293
7542 Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming

Authors: Corey F. Fitzgerald

Abstract:

This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room.

Keywords: sport science, applied biomechanics, strength and conditioning, applied research

Procedia PDF Downloads 66
7541 Thai Tourists’ Satisfaction and Tourist’s Decision Making Process in Southern of Thailand

Authors: Rewadee Waiyawassana

Abstract:

The objectives of the research on Thai tourists’ satisfaction of visiting Southern of Thailand are i) to study the Thai tourists’ satisfaction who select southern of Thailand as their destinations ii) to study their tourist’s decision making process in Southern of Thailand. The samples of the study are 619 Thai visitors at Southern of Thailand by accidental sampling technic and focus group interview for 12 key informant by purposive sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the satisfaction of Thai visitors on southern of Thailand ranks from the resources of the destination, transportation, convenience, security, and promotion and public relations; with the high level of satisfaction on all the factors the government or responsible agencies should also modernize the marketing and public relation with increasing public relations, the potential visitors shall be updated with new information and alternative tourist destination also.

Keywords: public relations, Southern of Thailand, Thai Tourists’ satisfaction, Tourist’s decision making process

Procedia PDF Downloads 327
7540 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 309
7539 Differences in Patient Satisfaction Observed between Female Japanese Breast Cancer Patients Who Receive Breast-Conserving Surgery or Total Mastectomy

Authors: Keiko Yamauchi, Motoyuki Nakao, Yoko Ishihara

Abstract:

The increase in the number of women with breast cancer in Japan has required hospitals to provide a higher quality of medicine so that patients are satisfied with the treatment they receive. However, patients’ satisfaction following breast cancer treatment has not been sufficiently studied. Hence, we investigated the factors influencing patient satisfaction following breast cancer treatment among Japanese women. These women underwent either breast-conserving surgery (BCS) (n = 380) or total mastectomy (TM) (n = 247). In March 2016, we conducted a cross-sectional internet survey of Japanese women with breast cancer in Japan. We assessed the following factors: socioeconomic status, cancer-related information, the role of medical decision-making, the degree of satisfaction regarding the treatments received, and the regret arising from the medical decision-making processes. We performed logistic regression analyses with the following dependent variables: extreme satisfaction with the treatments received, and regret regarding the medical decision-making process. For both types of surgery, the odds ratio (OR) of being extremely satisfied with the cancer treatment was significantly higher among patients who did not have any regrets compared to patients who had. Also, the OR tended to be higher among patients who chose to play a wanted role in the medical decision-making process, compared with patients who did not. In the BCS group, the OR of being extremely satisfied with the treatment was higher if, at diagnosis, the patient’s youngest child was older than 19 years, compared with patients with no children. The OR was also higher if patient considered the stage and characteristics of their cancer significant. The OR of being extremely satisfied with the treatments was lower among patients who were not employed on full-time basis, and among patients who considered the second medical opinions and medical expenses to be significant. These associations were not observed in the TM group. The OR of having regrets regarding the medical decision-making process was higher among patients who chose to play a role in the decision-making process as they preferred, and was also higher in patients who were employed on either a part-time or contractual basis. For both types of surgery, the OR was higher among patients who considered a second medical opinion to be significant. Regardless of surgical type, regret regarding the medical decision-making process decreases treatment satisfaction. Patients who received breast-conserving surgery were more likely to have regrets concerning the medical decision-making process if they could not play a role in the process as they preferred. In addition, factors associated with the satisfaction with treatment in BCS group but not TM group included the second medical opinion, medical expenses, employment status, and age of the youngest child at diagnosis.

Keywords: medical decision making, breast-conserving surgery, total mastectomy, Japanese

Procedia PDF Downloads 149
7538 Multi-Criteria Decision Approach to Performance Measurement Techniques Data Envelopment Analysis: Case Study of Kerman City’s Parks

Authors: Ali A. Abdollahi

Abstract:

During the last several decades, scientists have consistently applied Multiple Criteria Decision-Making methods in making decisions about multi-faceted, complicated subjects. While making such decisions and in order to achieve more accurate evaluations, they have regularly used a variety of criteria instead of applying just one Optimum Evaluation Criterion. The method presented here utilizes both ‘quantity’ and ‘quality’ to assess the function of the Multiple-Criteria method. Applying Data envelopment analysis (DEA), weighted aggregated sum product assessment (WASPAS), Weighted Sum Approach (WSA), Analytic Network Process (ANP), and Charnes, Cooper, Rhodes (CCR) methods, we have analyzed thirteen parks in Kerman city. It further indicates that the functions of WASPAS and WSA are compatible with each other, but also that their deviation from DEA is extensive. Finally, the results for the CCR technique do not match the results of the DEA technique. Our study indicates that the ANP method, with the average rate of 1/51, ranks closest to the DEA method, which has an average rate of 1/49.

Keywords: multiple criteria decision making, Data envelopment analysis (DEA), Charnes Cooper Rhodes (CCR), Weighted Sum Approach (WSA)

Procedia PDF Downloads 221
7537 Modelling Mode Choice Behaviour Using Cloud Theory

Authors: Leah Wright, Trevor Townsend

Abstract:

Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.

Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty

Procedia PDF Downloads 389
7536 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 41
7535 Key Principles and Importance of Applied Geomorphological Maps for Engineering Structure Placement

Authors: Sahar Maleki, Reza Shahbazi, Nayere Sadat Bayat Ghiasi

Abstract:

Applied geomorphological maps are crucial tools in engineering, particularly for the placement of structures. These maps provide precise information about the terrain, including landforms, soil types, and geological features, which are essential for making informed decisions about construction sites. The importance of these maps is evident in risk assessment, as they help identify potential hazards such as landslides, erosion, and flooding, enabling better risk management. Additionally, these maps assist in selecting the most suitable locations for engineering projects. Cost efficiency is another significant benefit, as proper site selection and risk assessment can lead to substantial cost savings by avoiding unsuitable areas and minimizing the need for extensive ground modifications. Ensuring the maps are accurate and up-to-date is crucial for reliable decision-making. Detailed information about various geomorphological features is necessary to provide a comprehensive overview. Integrating geomorphological data with other environmental and engineering data to create a holistic view of the site is one of the most fundamental steps in engineering. In summary, the preparation of applied geomorphological maps is a vital step in the planning and execution of engineering projects, ensuring safety, efficiency, and sustainability. In the Geological Survey of Iran, the preparation of these applied maps has enabled the identification and recognition of areas prone to geological hazards such as landslides, subsidence, earthquakes, and more. Additionally, areas with problematic soils, potential groundwater zones, and safe construction sites are identified and made available to the public.

Keywords: geomorphological maps, geohazards, risk assessment, decision-making

Procedia PDF Downloads 25