Search results for: extracting
223 Efficiency of Pre-Treatment Methods for Biodiesel Production from Mixed Culture of Microalgae
Authors: Malith Premarathne, Shehan Bandara, Kaushalya G. Batawala, Thilini U. Ariyadasa
Abstract:
The rapid depletion of fossil fuel supplies and the emission of carbon dioxide by their continued combustion have paved the way for increased production of carbon-neutral biodiesel from naturally occurring oil sources. The high biomass growth rate and lipid production of microalgae make it a viable source for biodiesel production compared to conventional feedstock. In Sri Lanka, the production of biodiesel by employing indigenous microalgae species is at its emerging stage. This work was an attempt to compare the various pre-treatment methods before extracting lipids such as autoclaving, microwaving and sonication. A mixed culture of microalgae predominantly consisting of Chlorella sp. was obtained from Beire Lake which is an algae rich, organically polluted water body located in Colombo, Sri Lanka. After each pre-treatment method, a standard solvent extraction using Bligh and Dyer’s method was used to compare the total lipid content in percentage dry weight (% dwt). The fatty acid profiles of the oils extracted with each pretreatment method were analyzed using gas chromatography-mass spectrometry (GC-MS). The properties of the biodiesels were predicted by Biodiesel Analyzer© Version 1.1, in order to compare with ASTM 6751-08 biodiesel standard.Keywords: biodiesel, lipid extraction, microalgae, pre-treatment
Procedia PDF Downloads 177222 Recovery of Copper from Edge Trims of Printed Circuit Boards Using Acidithiobacillus Ferrooxidans: Bioleaching
Authors: Shashi Arya, Nand L. Singh, Samiksha Singh, Pradeep K. Mishra, Siddh N. Upadhyay
Abstract:
The enormous generation of E- waste and its recycling have greater environmental concern especially in developing countries like India. A major part of this waste comprises printed circuit boards (PCBs). Edge trims of PCBs have high copper content ranging between 25-60%. The extraction of various metals out of these PCBs is more or less a proven technology, wherein various hazardous chemicals are being used in the resource recovery, resulting into secondary pollution. The current trend of extracting of valuable metals is the utilization of microbial strains to eliminate the problem of a secondary pollutant. Keeping the above context in mind, this work aims at the enhanced recovery of copper from edge trims, through bioleaching using bacterial strain Acidithiobacillus ferrooxidans. The raw material such as motherboards, hard drives, floppy drives and DVD drives were obtained from the warehouse of the University. More than 90% copper could be extracted through bioleaching using Acidithiobacillus ferrooxidans. Inoculate concentration has merely insignificant effect over copper recovery above 20% inoculate concentration. Higher concentration of inoculation has the only initial advantage up to 2-4 days. The complete recovery has been obtained between 14- 24 days.Keywords: acidithiobacillus ferrooxidans, bioleaching, e-waste, printed circuit boards
Procedia PDF Downloads 329221 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 353220 Educational Experiences in Engineering in the COVID Era and Their Comparative Analysis, Spain, March to June 2020
Authors: Borja Bordel, Ramón Alcarria, Marina Pérez
Abstract:
In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.Keywords: educational experience, online education, higher education digitalization, COVID, Spain
Procedia PDF Downloads 140219 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 123218 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion
Authors: Yingchen Yang
Abstract:
In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.Keywords: unidirectional, vertical axis, wave energy converter, wave rotor
Procedia PDF Downloads 236217 A New Method of Extracting Polyphenols from Honey Using a Biosorbent Compared to the Commercial Resin Amberlite XAD2
Authors: Farid Benkaci-Alia, Abdelhamid Neggada, Sophie Laurentb
Abstract:
A new extraction method of polyphenols from honey using a biodegradable resin was developed and compared with the common commercial resin amberlite XAD2. For this purpose, three honey samples of Algerian origin were selected for the different physico-chemical and biochemical parameters study. After extraction of the target compounds by both resins, the polyphenol content was determined, the antioxidant activity was tested, and LC-MS analyses were performed for identification and quantification. The results showed that physico-chemical and biochemical parameters meet the norms of the International Honey commission, and the H1 sample seemed to be of high quality. The optimal conditions of extraction by biodegradable resin were a pH of 3, an adsorption dose of 40 g/L, a contact time of 50 min, an extraction temperature of 60°C and no stirring. The regeneration and reuse number of both resins was three cycles. The polyphenol contents demonstrated a higher extraction efficiency of biosorbent than of XAD2, especially in H1. LC-MS analyses allowed for the identification and quantification of fifteen compounds in the different honey samples extracted using both resins and the most abundant compound was 3,4,5-trimethoxybenzoic acid. In addition, the biosorbent extracts showed stronger antioxidant activities than the XAD2 extracts.Keywords: extraction, polyphénols, biosorbent, resin amberlite, HPLC-MS
Procedia PDF Downloads 105216 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese
Authors: Lila Boulekbache-Makhlouf, Brahmi Fatiha
Abstract:
This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols (TPP) using ultrasound are optimized. Then, the contents of PPT, flavonoids, and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physico-chemical, microbiological, and sensory analyzes of the cheese produced. The maximum PPT value of 70.44 mg GAE/g DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min, and a temperature of 10°C. Meanwhile, the maximum TPP content of potato peels of 45.03 ± 4.16 mg GAE/g DM was obtained using an ethanol/water mixture (40%, v/v), a time of 30 min, and a temperature of 60°C and the flavonoid contents were 13.99 and 7.52 QE/g DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with IC50s of 125.42 ± 2.78 μg/mL for DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physico-chemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analyzes, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.Keywords: shallots leaves, potato peels, ultrasound extraction, phenolic, cheese
Procedia PDF Downloads 184215 Conversion of Atmospheric Carbone Dioxide into Minerals at Room Conditions by Using the Sea Water Plus Various Additives
Authors: Muthana A. M. Jamel Al-Gburi
Abstract:
Elimination of carbon dioxide (CO2) gas from the atmosphere is very important but complicated since there is increasing in the amounts of carbon dioxide and other greenhouse gases in the atmosphere, which mainly caused by some of the human activities and the burning of fossil fuels. So that will lead to global warming. The global warming affects the earth temperature causing an increase to a higher level and, at the same time, creates tornadoes and storms. In this project, we are going to do a new technique for extracting carbon dioxide directly from the air and change it to useful minerals and Nano scale fibers made of carbon by using several chemical processes through chemical reactions. So, that could lead to an economical and healthy way to make some valuable building materials. Also, it may even work as a weapon against environmental change. In our device (Carbone Dioxide Domestic Extractor), we are using Ocean-seawater to dissolve the CO₂ gas and then converted it into carbonate minerals by using a number of additives like Shampoo, clay, and MgO. Note that the atmospheric air includes CO₂ gas, has circulated within the seawater by the air pump. More, that we will use a number of chemicals agents to convert the water acid into useful minerals. After we constructed the system, we did intense experiments and investigations to find the optimum chemical agent, which must be work at the environmental condition. Further to that, we will measure the solubility of CO₂ and other salts in the seawater.Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level
Procedia PDF Downloads 111214 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber
Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi
Abstract:
The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle
Procedia PDF Downloads 492213 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 138212 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma
Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood
Abstract:
Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib
Procedia PDF Downloads 391211 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning
Authors: Karthik Mittal
Abstract:
This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA
Procedia PDF Downloads 146210 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 16209 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application
Authors: Syali Pradhan, Neetu Jha
Abstract:
The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.Keywords: marigold, flower waste, energy storage, cathode, supercapacitor
Procedia PDF Downloads 74208 Building a Dynamic News Category Network for News Sources Recommendations
Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee
Abstract:
It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.Keywords: news category, category network, news sources, ranking
Procedia PDF Downloads 386207 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 50206 A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine
Authors: Eman M. Eissa, Hany M. Hasanin, Mahmoud Abd-Elhamid, S. M. Muyeen, T. Fernando, H. H. C. Iu
Abstract:
Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented.Keywords: control and optimization techniques, permanent magnet synchronous generator, variable speed wind turbines, wind energy conversion system
Procedia PDF Downloads 223205 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 488204 Extracting Therapeutic Grade Essential Oils from the Lamiaceae Plant Family in the United Arab Emirates (UAE): Highlights on Great Possibilities and Sever Difficulties
Authors: Suzan M. Shahin, Mohammed A. Salem
Abstract:
Essential oils are expensive phytochemicals produced and extracted from specific species belonging to particular families in the plant kingdom. In the United Arab Emirates country (UAE), which is located in the arid region of the world, nine species, from the Lamiaceae family, having the capability to produce therapeutic grade essential oils. These species include; Mentha spicata, Ocimum forskolei, Salvia macrosiphon, Salvia aegyptiaca, Salvia macilenta, Salvia spinosa, Teucrium polium, Teucrium stocksianum, and Zataria multiflora. Although, such potential species are indigenous to the UAE, however, there are almost no studies available to investigate the chemical composition and the quality of the extracted essential oils under the UAE climatological conditions. Therefore, great attention has to be given to such valuable natural resources, through conducting highly supported research projects, tailored to the UAE conditions, and investigating different extraction techniques, including the application of the latest available technologies, such as superficial fluid CO2. This is crucially needed; in order to accomplish the greatest possibilities in the medicinal field, specifically in the discovery of new therapeutic chemotypes, as well as, to achieve the sustainability of this natural resource in the country.Keywords: essential oils, extraction techniques, Lamiaceae, traditional medicine, United Arab Emirates (UAE)
Procedia PDF Downloads 459203 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 160202 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables
Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman
Abstract:
Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology
Procedia PDF Downloads 116201 Technical and Pedagogical Considerations in Producing Screen Recorded Videos
Authors: M. Nikafrooz, J. Darsareh
Abstract:
Due to the COVID-19 pandemic, its impacts on education all over the world and the problems arising from the use of traditional methods in education, it was necessary to apply alternative solutions to achieve educational goals. In this regard, electronic content production through screen recording and giving educational services in virtual classes became popular among many teachers. But the production of screen recorded videos involves special technical and educational considerations so that educators could be able to produce valuable and well-made videos by taking those considerations into account. The purpose of this study was to extract and find the technical and educational considerations of producing screen recorded videos to provide a useful and comprehensive guideline for e-content producers to enable them to produce high-quality educational videos. This study is fundamental research and data collection has been done using the Delphi method. In this research, an attempt has been made to provide the necessary criteria and considerations regarding the design and production of screen recorded videos by studying the literatures, identifying and analyzing learners' and teachers' needs and expectations, reviewing the previously produced videos. The results of these studies led to the finding and extracting 129 indicators in the form of 6 criteria. Such considerations are expected to reduce production and editing time, increase the technical and educational quality, and finally facilitating and enhancing the processes of teaching and learning.Keywords: e-content, screen recorded videos, screen recording software, technical and pedagogical considerations
Procedia PDF Downloads 105200 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 26199 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 5198 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 325197 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 237196 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods
Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul
Abstract:
Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction
Procedia PDF Downloads 234195 Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract
Authors: S. Lekhavat, T. Kajsongkram, S. Sang-han
Abstract:
Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml).Keywords: antioxidant activity, enzyme, extraction, ginger
Procedia PDF Downloads 256194 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data
Authors: Mahdi Salarian, Xi Xu, Rashid Ansari
Abstract:
Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.Keywords: localization, retrieval, GPS uncertainty, bag of word
Procedia PDF Downloads 283